

Metro Revealed

Building Windows 8 Apps with HTML5 and
JavaScript

This book is included in this form by Microsoft Corporation by arrangement and through permission

from Apress Media.

Adam Freeman

Apress Media

Metro Revealed: Building Windows 8 apps with HTML5 and JavaScript
Copyright © 2012 by Adam Freeman

This work is subject to copyright. All rights are reserved by Apress Media, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4488-2

ISBN-13 (electronic): 978-1-4302-4489-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher of Apress: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Apress Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt
Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Kim Wimpsett
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. Ebook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code

http://www.apress.com/9781430244882
file://localhost/Users/markbyers/Library/Containers/com.apple.Preview/Data/Downloads//ciusnesp0002/homedir$/RICK01/www.apress.com
file://localhost/Users/markbyers/Library/Containers/com.apple.Preview/Data/Downloads//ciusnesp0002/homedir$/RICK01/www.apress.com/bulk-sales
http://www.apress.com/source-code
http://www.apress.com/source-code

Dedicated to my lovely wife, Jacqui Griffyth

–Adam Freeman

iv

Contents at a Glance

Contents ... v
Related Titles From Apress ... viii
About the Author .. x
About the Technical Reviewer ... xi
Acknowledgments .. xii
Chapter 1: Getting Started .. 1
Chapter 2: Data and Bindings ... 17
Chapter 3: Application Controls ... 45
Chapter 4: Layouts and Tiles .. 81
Chapter 5: Life-Cycle Events .. 101

v

Contents

Contents at a Glance ... iv

Contents ... v

Related Titles From Apress ... viii
About the Author .. x

About the Technical Reviewer ... xi
Acknowledgments .. xii

About This Book ... xiii
What Do You Need to Know Before You Read This Book? ... xiii

Do You Need to Know About HTML5? ... xiii

What Software Do You Need for This Book? ... xiv

What Is the Structure of This Book? ... xiv

Chapter 1: Getting Started .. 1

Is There a Lot of Code in This Book? .. 2

Getting Up and Running ... 2
Creating the Project ... 3

Exploring the default.html File .. 5

Exploring the default.css File ... 7

Exploring the default.js File .. 11

Starting and Debugging a JavaScript Metro App .. 13
Reloading the Metro Application ... 14

Debugging Metro Apps... 16

J CONTENTS

vi

Summary ... 16

Chapter 2: Data and Bindings ... 17

Creating the JavaScript File .. 18
Using Code Completion .. 20

Reducing Global Namespace Pollution ... 20

Returning to the View Model .. 22

Using Data Binding .. 23
Using Basic Declarative Bindings ... 24

Creating Dynamic Bindings .. 27

Updating an Observable Data Item ... 30

Creating Observable Arrays ... 32

Using Templates .. 36
Using the Template .. 37

Responding to List Changes ... 39

Tracking the Selected Item .. 40

Applying the Template to the App ... 41

Summary ... 44

Chapter 3: Application Controls ... 45

Adding an AppBar .. 47
Implementing App Bar Buttons ... 51

Adding Flyouts ... 52
Managing the Controls in a Flyout .. 55

Using Pages ... 57
Defining the HTML ... 57

Creating the JavaScript Callback .. 58

Loading and Displaying the HTML .. 59

Loading a Complete HTML Document .. 60

J CONTENTS

vii

Switching Between Pages .. 63

Displaying External Content .. 65
Adding the Callback ... 65

Showing the Page .. 67

Checking Manifest Permissions ... 68

Summary ... 69

Chapter 4: Layouts and Tiles .. 81

Dealing with Metro Layouts ... 82
Snapping and Filling with CSS .. 82

Snapping and Filling with JavaScript .. 84

Using Tiles and Badges .. 86
Improving Static Tiles... 87

Updating Tiles .. 88

Updating Wide Tiles ... 93

Applying Badges .. 96

Summary ... 99

Chapter 5: Life-Cycle Events .. 101

Dealing with the Metro Application Life Cycle ... 102
Correcting the Visual Studio Event Code ... 102

Testing the Life-Cycle Events ... 104

Adding a Background Activity ... 105

Implementing the Search Contract .. 112
Declaring Support for the Contract ... 113

Handling the Search ... 113

Implementing the Activated Event Handler ... 114

Testing the Search Contract ... 117

Summary .. 118

viii

Related Titles from Apress

Apress titles are available in print and electronic form at computer booksellers and electronic
bookstores around the world. Many of the titles listed here are available or will be available soon on
Apress.com on the Apress Alpha book program. Therein you can purchase a book, get chapters as they
are developed and in the end you will get the final ebook – all for the price of a normal Apress ebook. It’s
a great way to get started as our authors create the books. Simply go to the book’s page and click the
yellow Buy Alpha Book button. Thereafter, you can go in at any time and download the latest additions
to your ebook. Apress will notify you upon publication when the final ebook is available.

Upcoming publications include:

Available in May.

Metro Revealed: Building Windows 8 apps
with XAML and C#

Available in June.

Pro C# and the .NET 4.5 Framework 6th
Edition

Available this spring.

WinRT Revealed

Pro WinRT using C# and XAML
978-1-4302-4515-5

Beginning Silverlight 5 in C# 4 Edition

Available this summer.
Metro Style Application Recipes for
Windows 8 in C#

Pro Windows 8 Development with XAML
and C#
978-1-4302-4047-1

Pro Application Lifecycle Management
with Visual Studio 2nd Edition

Pro HTML5 Performance
978-1-4302-4524-7

Beginning HTML5 and CSS3

Foundation HTML5 with CSS3

Pro JavaScript for Web Apps

Beginning ASP.NET 4.5 in C#

Beginning ASP.NET 4.5 in VB

Ultra-Fast ASP.NET 4.5 2nd Edition

Beginning ASP.NET 4.5 Databases 3rd

Beginning C# 2012 Databases 2nd Edition

Illustrated C# 2012 4 Edition

Introducing .NET 4.5 2nd Edition

Pro WF 4.5

The Windows 8 Power Users Guide

Pro SQL Azure 2nd Edition

http://www.apress.com/
http://www.apress.com/9781430244912
http://www.apress.com/9781430244912
http://www.apress.com/microsoft/c/9781430242338
http://www.apress.com/9781430245841
http://www.apress.com/9781430234616
http://www.apress.com/9781430244400
http://www.apress.com/9781430244400
http://www.apress.com/9781430243441
http://www.apress.com/9781430243441
http://www.apress.com/9781430228745
http://www.apress.com/9781430238768
http://www.apress.com/9781430244615
http://www.apress.com/9781430242512
http://www.apress.com/9781430243298
http://www.apress.com/9781430243380
http://www.apress.com/9781430243809
http://www.apress.com/9781430242604
http://www.apress.com/9781430242789
http://www.apress.com/9781430243328
http://www.apress.com/9781430243830
http://www.apress.com/9781430244318
http://www.apress.com/9781430243953

J RELATED TITLES FROM APRESS

ix

Available this fall.
Beginning Metro Application Development
in Windows 8 –XAML Edition
978-1-4302-4566-7

Pro Visual Studio 11

Beginning Windows 8 App Development
978-1-4302-4563-6

Pro HTML5 with Visual Studio 2012
978-1-4302-4638-1
Pro Business Metro Style Apps in XAML

Pro HTML5 Application Development

Pro ASP.NET MVC 4 4 Edition.

Pro ASP.NET 4.5 in C# 5th Edition

Pro ASP.NET 4.5 in VB 5th Edition

JavaScript Programmer’s Reference
978-1-4302-4629-9

Pro WPF in C# 2012 4 Edition

Pro Windows 8 Development with HTML5
and JavaScript

Pro .Net Performance
978-1-4302-4458-5

Related published publications include:

Windows Azure Platform 2nd Edition

The Definitive Guide to HTML5

HTML5 Mastery

CSS Mastery 2nd Edition

DOM Scripting 2nd Edition

Pro .NET Best Practices

Pro Business Applications with Silverlight 5
2nd Edition

Pro Silverlight 5 in C# 4 Edition

Pro Silverlight 5 in VB 4 Edition

Beginning Kinect Programming with the
Microsoft Kinect SDK

Meet the Kinect

Hacking the Kinect

Pro Visual Studio LightSwitch 2011
Development

Pro NuGet

Beginning Windows Phone App
Development

Pro ASP.NET MVC 3 Framework 3rd
Edition

Pro LINQ

Pro .NET 4 Parallel Programming in C#

http://www.apress.com/9781430242062
http://www.apress.com/9781430243984
http://www.apress.com/9781430241737
http://www.apress.com/9781430242369
http://www.apress.com/9781430242543
http://www.apress.com/9781430243533
http://www.apress.com/9781430243656
http://www.apress.com/9781430244011
http://www.apress.com/9781430244011
http://www.apress.com/9781430235637
http://www.apress.com/9781430239604
http://www.apress.com/9781430238614
http://www.apress.com/9781430223979
http://www.apress.com/9781430233893
http://www.apress.com/9781430240235
http://www.apress.com/9781430235002
http://www.apress.com/9781430234791
http://www.apress.com/9781430235187
http://www.apress.com/9781430241041
http://www.apress.com/9781430241041
http://www.apress.com/9781430238881
http://www.apress.com/9781430238676
http://www.apress.com/9781430240082
http://www.apress.com/9781430240082
http://www.apress.com/9781430241911
http://www.apress.com/9781430241348
http://www.apress.com/9781430241348
http://www.apress.com/9781430234043
http://www.apress.com/9781430226536
http://www.apress.com/9781430229674

x

About the Author

A d a m F r e e m a n i s an ex pe rie n ced IT pro f e ssion al who h as
h e ld seni o r po si t io n s in a rang e of co mpani e s, mo st
re ce nt ly se rv in g as C hi ef Te ch no logy Of f i ce r and C hi ef
Ope rat i ng Of f i ce r of a g lo b al b ank. N o w ret i re d, he spe nd s
h i s t i me writ in g and run ni n g.

His other upcoming publications include:

Available in May.

Metro Revealed: Building Windows 8 apps with XAML and C#

Available this summer.

Pro JavaScript for Web Apps

Available this fall.

Pro Windows 8 Development with HTML5 and JavaScript

Pro Visual Studio 11

Pro ASP.NET MVC 4 4 Edition.

Pro ASP.NET 4.5 in C# 5th Edition

Pro ASP.NET 4.5 in VB 5th Edition

His other publications include:

The Definitive Guide to HTML5

Applied ASP.NET 4 in Context

Pro ASP.NET MVC 3 Framework 3rd Edition

Pro jQuery

Introducing Visual C# 2010

Pro ASP.NET 4 in C# 2010 4 Edition

Pro ASP.NET 4 in VB 2010 3rd Edition

Pro LINQ

Pro .NET 4 Parallel Programming in C#

Visual C# 2010 Recipes

http://www.apress.com/9781430244912
http://www.apress.com/9781430244615
http://www.apress.com/9781430244011
http://www.apress.com/9781430242062
http://www.apress.com/9781430242369
http://www.apress.com/9781430242543
http://www.apress.com/9781430243533
http://www.apress.com/9781430239604
http://www.apress.com/9781430234678
http://www.apress.com/9781430234043
http://www.apress.com/9781430240952
http://www.apress.com/9781430231714
http://www.apress.com/9781430225294
http://www.apress.com/9781430225119
http://www.apress.com/9781430226536
http://www.apress.com/9781430229674
http://www.apress.com/9781430225256

xi

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (www.brainforce.com) in its Italian branch
(www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft
Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific author
and technical reviewer. Over the past ten years, he’s written articles for Italian and international
magazines and coauthored more than ten books on a variety of computer topics.

http://www.brainforce.com/
http://www.brainforce.it/

xii

Acknowledgments

I would like to thank everyone at Apress for working so hard to bring this book to print. In particular,
I would like to thank Jennifer Blackwell for keeping me on track and Ewan Buckingham for
commissioning and editing this book. I would also like to thank my technical reviewer, Fabio,
whose efforts made this book far better than it would have been otherwise.

xiii

Introduction

Metro apps are an important addition to Microsoft Windows 8, providing the cornerstone for a single,
consistent programming and interaction model across desktops, tablets, and smartphones. The Metro
app user experience is very different from previous generations of Windows applications: Metro apps are
full-screen and favor a usability style that is simple, direct, and free from distractions.

Metro app development represents a complete departure from previous versions of Windows. There
are entirely new APIs, new interaction controls, and a very different approach to managing the life cycle
of applications.

Metro apps can be developed using a range of languages, including C#, Visual Basic, C++, and, the
topic of this book, JavaScript. Windows 8 is the first version of Windows that embraces the skills and
knowledge of web application developers and makes JavaScript and HTML first-class citizens in
application development.

In this book, I show you how you can build on your knowledge of web app development to create
Metro apps using HTML and JavaScript. The result is apps that look and feel like an integral part of the
Windows experience and that take advantage of core platform facilities.

This book gives you an essential jump start into the world of Metro; by the end, you will understand
how to use the controls and features that define the core Metro experience.

About This Book
This book is for experienced HTML and JavaScript developers who want to get a head start creating
Metro applications for Windows 8 using the Consumer Preview test release. I explain the concepts and
techniques you need to get up to speed quickly and to boost your Metro development techniques and
knowledge before the final version of Windows 8 is released.

What Do You Need to Know Before You Read This Book?
You need to have a good understanding of HTML and JavaScript, ideally from creating rich web apps.
You need to understand the DOM API, know how events work, and have a solid grasp of the HTML
elements and their DOM object counterparts.

Do You Need to Know About HTML5?
No. You can use some of the HTML5 JavaScript APIs when developing Metro apps, but that is not the
focus of this book. A good basic knowledge of HTML4 or HTML5 will be enough, combined with solid
JavaScript experience.

http://www.apress.com/9781430238614
http://www.apress.com/9781430244615
http://www.apress.com/9781430233893

J INTRODUCTION

xiv

What Software Do You Need for This Book?
You will need the Windows 8 Consumer Preview and the Visual Studio 11 Express Beta for Windows 8.
You can download both of them from http://preview.windows.com. You don’t need any other tools to
develop Metro applications or for the examples in this book.

Windows 8 Consumer Preview is not a finished product, and it has some stability issues. You’ll get
the best experience if you install Windows 8 directly onto a well-specified PC, but you can get by with a
virtual machine if you are not ready to make the switch.

What Is the Structure of This Book?
I focus on the key techniques and features that make a Metro app. You already know how to write HTML
and use form elements to gather input from the user, and I am not going to waste your time teaching you
what you already know. This book is about translating your web app development experience into the
Metro world, and that means focusing on what makes a Metro app special.

I have taken a relaxed approach to mixing topics. Aside from the main theme in each chapter, you’ll
find some essential context to explain why features are important and why you should implement them.
Along the way, I’ll show you the conventions for writing JavaScript Metro apps and introduce as many
Metro features as I can. By the end of this book, you will understand how to build a Metro app that
integrates properly into Windows 8 and presents a user experience that is consistent with Metro apps
written using other technologies, such as XAML/C#.

This is a primer to get you started on Metro programming for Windows 8. It isn’t a comprehensive
tutorial; as a consequence, I have focused on those topics that are the major building blocks for a Metro
app. There is a lot of information that I just couldn’t fit into such a slim volume. If you do want more
comprehensive coverage of Metro development, then Apress will be publishing my Pro Windows 8
Development with HTML5 and JavaScript book for the final release of Windows 8.

The following sections summarize the chapters in this book.

Chapter 1: Getting Started
 Aside from introducing this book, I show you how to create the Visual Studio project for the example
Metro app that I use throughout this book. I show you how to use the JavaScript tools in Visual Studio,
how to test your Metro apps in the Visual Studio simulator, and how to use the debugger.

Chapter 2: Data and Bindings
Data is at the heart of any Metro application, and in this chapter I show you how to define a view model
and how to use Metro data bindings to bring that data into your application layouts. These techniques
are essential to building Metro apps that are easy to extend, easy to test, and easy to maintain. Along the
way, I’ll show you how to define Metro JavaScript namespaces, create observable arrays, use JavaScript
promises, and generate content using templates.

Chapter 3: Application Controls
Certain user interface controls are common to all Metro apps, regardless of which language is used to
create them. In this chapter, I show you how to create and configure AppBars and Flyouts, which are the
two most important of these common controls; together they form the backbone of your interaction

http://preview.windows.com/
http://www.apress.com/9781430244912
http://www.apress.com/9781430244011
http://www.apress.com/9781430244011

J INTRODUCTION

xv

with the user. I also show you how to break up your Metro content and code into pieces to make your
app easy to manage and how to bring those pieces together at runtime.

Chapter 4: Layouts and Tiles
The functionality of a Metro application extends to the Windows 8 Start menu, which offers a number of
ways to present the user with additional information. In this chapter, I show you how to create and
update dynamic Start tiles and how to apply badges to those tiles.

I also show you how to deal with the Metro snapped and filled layouts, which allow a Windows 8
user to use two Metro apps side by side. You can adapt to these layouts using CSS or JavaScript, and I
show you both approaches.

Chapter 5: Life-cycle Events
Windows applies a very specific life-cycle model to Metro apps. In this chapter, I explain how the model
works, show you how to receive and respond to critical life-cycle events, and describe how to manage
the transitions between suspended and running applications. I demonstrate how to create and manage
asynchronous tasks and how to bring them under control when your application is suspended. Finally, I
show you how to support Metro contracts, which allow your application to seamlessly integrate into the
wider Windows 8 experience.

C H A P T E R 1

J J J�

1

Getting Started

The most effective way to introduce the concepts we want to discuss in this book is through an example.
The example application for this book is a simple grocery list manager called MetroGrocer. As an
application in its own right, MetroGrocer is pretty dull, but it is a perfect platform to demonstrate the
most important Metro features. You can see how the app looks by the end of this book in Figure 1-1.

Figure 1-1. The example application

This is a book about programming and not design. MetroGrocer is not a pretty application, and I
don’t even implement all of its features. It is a vehicle for demonstrating coding techniques, pure and
simple. You have picked up the wrong book if you want to learn about design. If you want to do some
heavy-duty Metro programming, then you are in the right place.

Is There a Lot of Code in This Book?
Yes. In fact, there is so much code that I couldn’t fit it all in without some editing. So, when I introduce a
new topic or make a lot of changes, I’ll show you a complete HTML or JavaScript file. When I make small
changes or want to emphasize a few critical lines of code or markup, I’ll show you a code fragment, like
the one in Listing 1-1, which is taken from Chapter 5.

CHAPTER 1 J GETTING STARTED

2

Listing 1-1. A Code Fragment

...
if (e.kind == actNS.ActivationKind.search) {
 Search.searchAndSelect(e.queryText);
}
...

These fragments make it easier for me to pack more code into the book, but they make following
along with the examples in isolation by typing them into Visual Studio more difficult. If you do want to
follow the examples, then the best way is to download the source code for this book from Apress.com.
The code is available for free and includes a complete Visual Studio project for every chapter in the book,
which means you’ll always be able to see the big picture.

I have focused on introducing new techniques and avoid showing you what you already know. A
causality of this approach is CSS style sheets. CSS classes are very repetitive and verbose, and I don’t
want to waste time by listing endless reams of styles when I could be showing you something more
interesting. You can find all of the CSS in the source code download if you want to make your projects
look identical to the example project.

Getting Up and Running
In this section, I will create the project for the example Metro application that I will build up throughout
the book. The application is a simple grocery list tracker; it’s a tool that is simple enough to complete in
this short book but that has enough features to demonstrate the most important aspects of Metro-style
development.

J Note Microsoft uses the terms Metro style and Metro-style app. I can’t bring myself to use these awkward
terms, so I am just going to refer to Metro and Metro apps. I’ll leave you to mentally insert style as needed.

Creating the Project
To create the example project, start Visual Studio 11 and select New Project, either from the File menu or
from the link on the start page. In the New Project dialog, navigate to Installed Æ Templates Æ JavaScript
Æ Windows Metro style. Select the Blank Application template, set the name of the project to be
MetroGrocer, and click the OK button to create the project, as shown in Figure 1-2. If this is the first time
that you have used Visual Studio, then you will be prompted to obtain a developer license and perform
some other initial configuration steps.

http://www.apress.com/9781430244011
http://www.apress.com/9781430238768

CHAPTER 1 J GETTING STARTED

3

Figure 1-2. Creating the example project

J Tip Visual Studio includes templates preconfigured for some basic project scenarios. They are not much use,
and, to my mind at least, they direct the programmer down a path that doesn’t reflect the strengths of HTML5 and
JavaScript. I recommend starting with a blank project and building your app from the ground up, which is the
approach I have taken in this book.

The Solution Explorer shows the contents of the project, which you can see in Figure 1-3. The

References folder contains the Microsoft JavaScript and CSS files that are required for Metro
development. The default.html file is the page that will be loaded when the application is started, and
the css, images, and js folders contain the resources that the app will depend on.

CHAPTER 1 J GETTING STARTED

4

Figure 1-3. The blank example project as shown by the Solution Explorer

The essential files are default.html, default.css, and default.js. These files define the structure of
the layout, the styles applied to it, and the code that manages the data and the interactions with the user.
The fact that these files are the same ones you would generally see in web app development reflects the
way in which Metro app development embraces web development techniques and tools.

In the sections that follow, I’ll show you each of the most important files in the project, explain what
they do, and make some initial changes to create the structure I’ll need later in this book.

Exploring the default.html File
The default.html file is the one that Windows 8 loads when the Metro app is started. You can change the
start file by opening the package.appxmanifest file and changing the value for the Start Page setting, but
I am going to stick with the default. (Don’t worry about the rest of the package.appxmanifest file; I’ll
come back to that in later chapters.) Metro HTML files are just like regular HTML files, and all of the
HTML5 features and support available in Internet Explorer 10 is available for use in your Metro apps.
Listing 1-2 shows the contents of default.html. I have highlighted the additions I made to put some
basic structure in place.

CHAPTER 1 J GETTING STARTED

5

Listing 1-2. The Contents of the default.html File

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>MetroGrocer</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
 <script src="//Microsoft.WinJS.0.6/js/base.js"></script>
 <script src="//Microsoft.WinJS.0.6/js/ui.js"></script>

 <!-- MetroGrocer references -->
 <link href="/css/default.css" rel="stylesheet">
 <script src="/js/default.js"></script>
</head>
<body>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Left Container</h1>
 </div>

 <div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Top Right Container</h1>
 </div>

 <div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Bottom Right Container</h1>
 </div>
 </div>
</body>
</html>

As the listing shows, default.html is a regular HTML5 document, but with a few key differences. For
example, there are link and script elements that use nonstandard URLs:

<link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
<script src="//Microsoft.WinJS.0.6/js/base.js"></script>
<script src="//Microsoft.WinJS.0.6/js/ui.js"></script>

The base.js and ui.js files contain the JavaScript code for the WinJS API, which you use to create
JavaScript Metro apps. I’ll introduce some of the most useful parts of WinJS in later chapters.

THE WORLD OF METRO APIS

You have access to several different APIs when writing Metro apps. There is the Windows API, which is
shared across all Metro apps, regardless of the language used to write them. There is the WinJS API,
which is just for JavaScript Metro apps and which acts as a bridge between the capabilities of
HTML/JavaScript and Windows. Finally, you have the standard Document Object Model API, which you can

CHAPTER 1 J GETTING STARTED

6

use to navigate the HTML markup in your application, register event handlers, and so on. JavaScript is a
first-class citizen in the Metro world, and your web app development knowledge will be very useful as you
start your development projects.

For the most part, the WinJS API is where you will spend most of your development time, and this is my
focus for the first part of this book. The Windows API comes into its own when you want to integrate your
app into the wider Windows 8 platform, which I describe in Chapters 4 and 5.

The ui-dark.css file contains the styles that Windows 8 uses for Metro applications, tailored for use

with a dark color scheme (meaning white text on a dark background). There is a corresponding file
called ui-light.css that you can use if you want to have dark text on a light background instead. The
CSS files provide styles for all of the common HTML elements so that they fit into the Metro visual theme
and are consistent with Metro apps written in other languages, such as C#/XAML. You can customize
these styles by overriding them in your application, but for the most part, it is important to retain
consistency with other Metro apps.

J Tip It is worth opening and reading these files. One of the nice things about developing Metro apps with web
technologies is that you can read the source code for the WinJS library and the CSS files. You can’t edit the files,
but you can see what is going on and, most usefully, set breakpoints in the WinJS code when using the debugger
(which I demonstrate later in this chapter).

All three of these references are added to the default.html file automatically when Visual Studio
creates the project. Visual Studio also adds references to the default.css and default.js files. By
convention, these contain the JavaScript and CSS associated with default.html, but you can rename or
replace these files as you see fit. I will stick with the defaults to keep things simple.

My additions to default.html are shown in bold in the listing. I have added a div element whose id
is contentGrid. This will be the container for most of the content in my example app, and it contains
three other div elements: leftContainer, topRightContainer, and bottomRightContainer. I’ll add content
to these elements as we proceed through the book.

Class names that begin with win-type are defined in ui-dark.css and are used to set the size of text
in a Metro application. There are a series of styles that relate to gradations in text size from largest to
smallest: win-type-xx-large, win-type-x-large, win-type-large, win-type-medium, win-type-small, and
win-type-x-small. There are two other win-type styles: win-type-ellipsis uses an ellipsis (...) when
text doesn’t fit into its parent element, and win-type-interactive makes an element resemble a link. In
default.html, I have used the win-type-xx-large style to create placeholder headers in the layout.

Exploring the default.css File
Listing 1-3 shows the contents of the default.css file. Metro projects rely on standard CSS with some
vendor-specific prefixes. Microsoft used to be terrible for introducing its own CSS properties, but the
ones you’ll encounter in this book exist either because the relevant W3C standard is still unfinished or
because there are properties that are specific to Windows 8 functionality that need to be expressed to

CHAPTER 1 J GETTING STARTED

7

Metro apps. You can see examples of both in the listing. The file that Visual Studio creates is very simple,
and my additions are shown in bold.

Listing 1-3. The Contents of the default.css File

body {
 background-color: #3E790A;
}

#contentGrid {
 display: -ms-grid;
 -ms-grid-rows: 1fr 1fr;
 -ms-grid-columns: 60% 60%;
 height: 100%;
 overflow: scroll;
}

#contentGrid div.gridLeft {
 margin-left: 1em;
 margin-right: 1em;
}

#contentGrid div.gridRight {
 margin-right: 1em;
}

#leftContainer {
 -ms-grid-column: 1;
 -ms-grid-row: 1;
 -ms-grid-row-span: 2;
}

#topRightContainer {
 -ms-grid-column: 2;
 -ms-grid-row: 1;
}

#bottomRightContainer {
 -ms-grid-column: 2;
 -ms-grid-row: 2;
}

@media screen and (-ms-view-state: fullscreen-landscape) {
}

@media screen and (-ms-view-state: filled) {
}

@media screen and (-ms-view-state: snapped) {
}

CHAPTER 1 J GETTING STARTED

8

@media screen and (-ms-view-state: fullscreen-portrait) {
}

The @media rules work like regular media queries, but the property that they are responding to is
specific to Metro and represents different orientations and usage scenarios (which I will explain and
demonstrate in Chapter 4).

J Tip Visual Studio indents CSS styles to create a visual hierarchy. This drives me crazy for some reason, so I
have disabled this feature for all of the listings in this book. You can change the way that Visual Studio displays
CSS by selecting Options from the Tools menu, navigating to Text Editor � CSS � Formatting, and unchecking the
“Hierarchical indentation” option.

With my additions, I have defined a background color for the app, following the apparent Metro
trend toward muted colors. The other additions I have made apply a CSS3 grid layout to the div
elements I defined in default.html. You can use any of the new CSS3 layout models in a Metro app (or
any CSS layout for that matter), but the specification for the grid layout has yet to be finalized, so I have
to prefix my layout properties with –ms.

A QUICK INTRODUCTION TO CSS3 GRID LAYOUTS

You may not have used the grid layout because it is not consistently implemented in mainstream web
browsers. Fortunately, when developing Metro web apps, we need to worry only about Internet Explorer
10, which is used to display JavaScript Metro apps to the user. In this sidebar, I provide you with a very
quick introduction to the basic features of CSS3 grid layouts. To get started with a grid layout, you must set
the display property and specify the number of rows and columns for the element that will contain the
grid, like this:

#contentGrid {
 display: -ms-grid;
 -ms-grid-rows: 1fr 1fr;
 -ms-grid-columns: 60% 60%;
}

The display property must be set to –ms-grid. The –ms-grid-rows and –ms-grid-columns properties
specify the dimensions of the grid. These can be specified as fractional units (expressed as fr), as a
percentage of the available space, or as using fixed dimensions. I have specified two equal-sized rows and
two columns, the width of which is set to be 60 percent of the width of the parent element.

It is common in Metro apps (or at least common in the ones developed so far) to provide a content area
that is wider than the screen and allow the user to scroll from left to right to access different regions of the
app. Setting the cumulative width to 120 percent sets up that behavior, which you will be able to see when
I run the example web app later in this chapter.

CHAPTER 1 J GETTING STARTED

9

For individual items, you specify which row and column they should appear in, like this:

#leftContainer {
 -ms-grid-column: 1;
 -ms-grid-row: 1;
 -ms-grid-row-span: 2;
}

The –ms-grid-column and –ms-grid-row properties locate an element in the grid. Both properties are 1-
based, meaning that locating an element in column 1 and row 1 will place it in the top-left position in the
grid. By default, elements occupy one grid square, but you can change this using the –ms-grid-row-span
and –ms-grid-column-span properties. In the example, I have made the leftContainer element span
two rows. The only other property of interest is –ms-grid-column-align, which I have not used in my
example. This property specifies the alignment of an element within a grid square and can be set to start,
end center, or stretch. If you are using a left-to-right language such as English, the start and end
values left- and right-justify the element. The center value centers the element, and the stretch value
resizes the element so that it completely fills its allocated space. You can create some very complex
layouts using the grid properties. See the full specification at www.w3.org/TR/css3-grid for details,
bearing in mind that this is not yet a ratified standard.

Exploring the default.js File
The last of the important files that Visual Studio has created is default.js, which is referenced in
default.html using a standard script element. You can see the content of this file in Listing 1-4.

Listing 1-4. The Content of the default.js File

// For an introduction to the Blank template, see the following documentation:
// http://go.microsoft.com/fwlink/?LinkId=232509
(function () {
 "use strict";

 var app = WinJS.Application;

 app.onactivated = function (eventObject) {
 if (eventObject.detail.kind ===
 Windows.ApplicationModel.Activation.ActivationKind.launch) {

 if (eventObject.detail.previousExecutionState !==
 Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 WinJS.UI.processAll();
 }
 };

CHAPTER 1 J GETTING STARTED

10

 app.oncheckpoint = function (eventObject) {
 // TODO: This application is about to be suspended. Save any state
 // that needs to persist across suspensions here. You might use the
 // WinJS.Application.sessionState object, which is automatically
 // saved and restored across suspension. If you need to complete an
 // asynchronous operation before your application is suspended, call
 // eventObject.setPromise().
 };

 app.start();
})();

I have not made any changes to this file aside from reformatting the code so that it fits on the page.
This is where Metro apps depart from the standard web app environment and we start to see some of the
Windows API poke through. Metro apps have a life cycle that is more complex than a web app, and the
code added to default.js by Visual Studio provides some basic support for handling different
application states. It isn’t as bad as it looks, and I’ll explain what you need to know about the Metro app
life cycle, and how to respond to it, in Chapter 5.

USING YOUR FAVORITE JAVASCRIPT LIBRARIES WITH METRO

By this point, you will have realized that a lot of your experience in web app development is directly
transferable to the world of Metro development. You can get a head start on your Metro projects by using
your favorite JavaScript libraries. I am a huge fan of jQuery, for example, as anyone who has read my Pro
jQuery book will know. For the most part, you shouldn’t have any problems using well-written libraries as
long as you avoid areas where Metro follows a different model than mainstream browsers. So, for
example, jQuery works well in Metro apps, but be careful when using the ready event. In a Metro app, you
need to respond directly to the life-cycle events. Another area to avoid is asynchronous script loading; I
have had some problems in this area with the Windows 8 Consumer Preview, and it is simpler just to load
your code using a regular script element.

There are some libraries, however, that it just doesn’t make much sense to use. Examples include user
interface toolkits such as jQuery UI and jQuery Mobile. You can make these work in Metro, but you end up
with an application that doesn’t follow the distinctive Metro style and that may not respond to touch events
in quite the same way as other Metro apps.

As a general guide, I recommend you get used to the capabilities of the WinJS API before you start using
your favorite JavaScript packages. Microsoft has provided a reasonably solid set of foundation capabilities,
including interface controls, data binding, and even a cut-down version of jQuery. These sometimes have
flaws, some of which you will see in this book, but I suggest you learn what WinJS has to offer before
adding other JavaScript libraries.

http://www.apress.com/9781430240952
http://www.apress.com/9781430240952

CHAPTER 1 J GETTING STARTED

11

Starting and Debugging a JavaScript Metro App
The best way of testing and debugging a Metro app is using the simulator, which is included as part of
the Visual Studio download. In the Visual Studio window, you will see a right-arrow next to the words
Local Machine. Click the small down arrow to the right of the words, and select Simulator from the
menu, as shown in Figure 1-4.

Figure 1-4. Selecting the simulator for a Metro application

To start the Metro app, click the button, which will now read Simulator. A new window will appear
that displays the Metro app, as shown in Figure 1-5.

Figure 1-5. The Metro simulator

This is the best mechanism for testing Metro apps because it allows you to simulate device
capabilities that are not natively available on your development machine. If you explore the buttons on
the right edge of the simulator window, you will see options for changing the screen resolution,
changing the orientation of the device, and simulating touch interactions and location data.

CHAPTER 1 J GETTING STARTED

12

J Note You will recall that I set the width of the grid layout to 120 percent of the available space when I added
styles to the default.css file earlier in this chapter. You can see the effect of this in the figure. The text for the
bottom-right container is clipped, and part of the layout isn’t immediately visible. You can slide the view by touch
or by using the mouse.

Reloading the Metro Application
One of the nice aspects of using JavaScript to develop Metro apps is that you don’t have to stop and
restart the app on the simulator to reflect any changes you make. To demonstrate this, I have made a
couple of simple changes. First, I have changed the text contained in one of the div elements in
default.html, as shown in Listing 1-5.

Listing 1-5. Making an HTML Change

...
<div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Left Full Container</h1>
</div>
...

I have also made a change to default.css, as shown in Listing 1-6, assigning a different background
color to another element.

Listing 1-6. Making a CSS Change

...
#topRightContainer {
 -ms-grid-column: 2;
 -ms-grid-row: 1;
 background-color: #808080;
}
...

J Tip When I show partial listings like these, only the bold area has changed. The rest of the file remains just as
it was in earlier listings. I know some readers prefer that all code listings be shown complete, but I need to pack a
lot of information into a slim book, and this is an excellent way of increasing the content density. Don’t forget that
you can get the complete source code, without charge, from Apress.com.

Figure 1-6 shows the Visual Studio controls that control the execution of the Metro app in the
simulator. The first four start, pause, stop, and restart execution. These are the traditional debugger
controls that Visual Studio has had for as long as I can remember.

http://www.apress.com/9781430244882

CHAPTER 1 J GETTING STARTED

13

Figure 1-6. Controls for restarting and reloading the Metro app

The addition is the reload button, which I have highlighted on its own and which is to the right of
the other controls. Clicking this button quickly reloads the content of your Metro app and immediately
reflects any changes. You can see the effect of my HTML and CSS changes in Figure 1-7.

Figure 1-7. The Metro simulator now showing the HTML5 and CSS changes

It isn’t just the HTML and CSS that are reloaded. The JavaScript for the application is refreshed as
well. This is a nice and quick way of getting an iterative write-and-test development cycle going for
Metro apps.

Debugging Metro Apps
Visual Studio has an excellent debugger, and it can be used very easily to track down problems in
JavaScript Metro apps. In my own application code, I find it easiest to add the debugger keyword to my
code. When the runtime encounters the keyword, the debugger breaks, and I can step through my code,
inspect variables, and execute little snippets of code using the JavaScript console.

You can use the debugger keyword only for code you can modify, however, which means that I have
to take a different approach when I want to break the debugger on a statement in one of the Microsoft
base.js and ui.js JavaScript files. To do this, I have to select the statement I am interested in, right-
click, and select Breakpoint Æ Insert Æ Breakpoint from the pop-up menu. The effect is the same, but no
modifications are made to the file.

I recommend exploring the Visual Studio debugger; it is more sophisticated than the developer tools
available in browsers, and it is well worth a couple of hours to get to grips with how it works.

CHAPTER 1 J GETTING STARTED

14

Summary
In this chapter, I introduced the structure of the book and provided a brief preview of what you will find
in the chapters that follow. I also showed you the anatomy of a basic Metro project and created the
example project that I will build on for the rest of the book. Finally, I showed you how to use the
simulator to run a Metro application and briefly touched on the two ways to cause the Visual Studio
debugger to break when running your code. In the next chapter, I’ll start to add some functionality to the
example and begin using some of the features of the WinJS API. I start by defining a view model and
demonstrating how to bind the data it contains to the Metro app layout; this is an essential technique for
building robust apps that are easily to build, scale, and maintain.

C H A P T E R 2

J J J

15

Data and Bindings

In this chapter, I show you how to define and use the data that forms the core of a Metro application. To
do this, I will be loosely following the view model pattern, which allows me to cleanly separate the data
from the HTML that is used to present it to the user. This makes applications easier to write, test, and
maintain.

You may already be familiar with models and view models from design patterns such as Model-
View-Controller (MVC) and Model-View-View Controller (MVVC). I am not going to get into the details
of these patterns in this book. There is a lot of good information about MVC and MVVC available,
starting with Wikipedia, which has some very balanced and insightful descriptions.

I find the benefits of using a view model to be enormous and well worth considering for all but the
simplest Metro projects, and I recommend you seriously consider following the same path. I am not a
pattern zealot, and I firmly believe in taking the parts of patterns and techniques that solve real
problems and adapting them to work in specific projects. To that end, you will find that I take a pretty
liberal view of how a view model should be used.

This chapter is largely focused on the behind-the-scenes plumbing in a Metro app. I start slowly,
showing you the conventions for adding JavaScript code to a Metro project and how to use the Metro
JavaScript features to reduce global namespace pollution. From there, I define a simple view model and
demonstrate different techniques for bringing the data from the view model into the application display.
This chapter is all about creating a solid foundation for a Metro app and getting to grips with the core
Metro JavaScript functionality. Table 2-1 provides the summary for this chapter.

Table 2-1. Chapter Summary

Problem Solution Listing

Create a view model. Use the WinJS.Namespace.define method to create
a global object containing your application data.

1

Display values from the view
model.

Use the data-win-bind attribute to create
declarative bindings and call the
WinJS.Binding.processAll method to process
them.

2, 3

Create a dynamic binding. Use the WinJS.Binding.as method to create an
observable data property. Assign new values to the
property to trigger updates in the HTML.

4, 6, 7

CHAPTER 2 J DATA AND BINDINGS

16

Problem Solution Listing

Create an observable data
properties in a globally
available namespace object.

Ensure that the object with the observable
properties isn’t directly exported by the
WinJS.Namespace.define method.

5

Create observable arrays. Use the WinJS.Binding.List object. 8, 9, 10

Generate HTML elements from
observable arrays.

User the WinJS template feature. 11, 12

Creating the JavaScript File
The first step is to create a new JavaScript file. Unlike a web app, there is no reason to reduce the number
of JavaScript files in a Metro application because they are already resident on the user’s computer when
the application is started. This means I don’t have to concatenate files or worry about minimizing code
to reduce the size of script files. Instead, I can create separate files for each main application feature.

Add a new file by right-clicking the js folder in the Solution Explorer window and selecting Add �
New Item from the menu. Select JavaScript File from the list, set the name to viewmodel.js, and click the
Add button to create the file. Visual Studio will add a new empty file to the project and open it for
editing. Add the statements shown in Listing 2-1.

Listing 2-1. The Initial Contents of the View Model Class

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("ViewModel.UserData", {
 // private members
 _shoppingItems: [],
 _preferredStores: [],

 // public members
 homeZipCode: null,

 getStores: function () {
 return this._preferredStores;
 },

 addStore: function(newStore) {
 this._preferredStores.push(newStore);
 },

 getItems: function () {
 return this._shoppingItems;

CHAPTER 2 J DATA AND BINDINGS

17

 },

 addItem: function(newName, newQuantity, newStore) {
 this._shoppingItems.push({
 item: newName,
 quantity: newQuantity,
 store: newStore
 });
 }
 });

 ViewModel.UserData.homeZipCode = "NY 10118";

 ViewModel.UserData.addStore("Whole Foods");
 ViewModel.UserData.addStore("Kroger");
 ViewModel.UserData.addStore("Costco");
 ViewModel.UserData.addStore("Walmart");

 ViewModel.UserData.addItem("Apples", 4, "Whole Foods");
 ViewModel.UserData.addItem("Hotdogs", 12, "Costco");
 ViewModel.UserData.addItem("Soda", "4 pack", "Costco");

})();

I’ll return to the view model in a moment, but first I need to explain some of the other parts of the
code and the conventions they represent. I won’t do this for subsequent files, but there is some useful
context to put in place as you get started with Metro development.

Using Code Completion
Visual Studio supports JavaScript code completion in the editor, which makes writing code simpler and
less error-prone. You must use a reference element to bring JavaScript files into scope for code
completion for files that are not in the local directory, like this:

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

Prefixing the reference element with three slash (/) characters brings the reference to the attention
of Visual Studio and causes the JavaScript runtime to treat the statement like a comment. With these
additions, code-completion support for the WinJS API is added to the viewmodel.js file. You need to add
these reference elements to each of your JavaScript files if you want WinJS completion.

J Tip JavaScript code completion in the Visual Studio 11 beta is a little unreliable. I find that trying to complete
code often causes Visual Studio to crash—so much so that I have taken to disabling code completion for
JavaScript files in the Visual Studio options.

CHAPTER 2 J DATA AND BINDINGS

18

Reducing Global Namespace Pollution
One of the biggest problems in JavaScript is variable name collision. JavaScript variables defined outside
a function are globally available, and since there are only so many meaningful variable names, it is only a
matter of time before two different regions of code try to use the same variable name for different
purposes. Global variables are said to be part of the global namespace, and defining global variables is
often described as polluting the global namespace. Metro JavaScript files follow three different
conventions to reduce namespace pollution, all of which you should adopt.

Creating Namespaces
The WinJS API helps reduce global namespace pollution through the define method of the Namespace
object:

WinJS.Namespace.define("ViewModel.UserData", {
 // ... members for the ViewModel.UserData object are defined here ...
});

The first argument to the define method is the global name that you want to assign to your object.
In this case, I have specified ViewModel.UserData, which creates a global variable called ViewModel that
has a UserData property. The value of the UserData property is the object that I pass as the second
argument to the define method, effectively exporting the members of the object so that they are
available globally via ViewModel.UserData. You’ll see how this works when I come to apply the data to
markup shortly.

There are a couple of reasons to use the define method, as opposed to handling this yourself. First,
the ViewModel object will be created only if it doesn’t already exist. This means I can easily build up the
capabilities of my view model through multiple calls to the define method. The idea is that I can
associate complex objects and functions together under a single global namespace object and reduce
the likelihood of a variable name collision.

J Tip There is a more sophisticated approach to dealing with this issue, known as the Asynchronous Module
Definition (AMD). The AMD technique effectively eliminates global variable name collisions by allowing the
consumer of a JavaScript file to pick the name of the variable through which a JavaScript library is accessed.
Metro doesn’t support AMD modules directly, but you can use an AMD-aware script loader such as require.js.

The second reason to use the define method is because it doesn’t export any property that begins
with an underscore character, which is a common JavaScript convention for defining private members.
This means that when I export my UserData object, the _shoppingItems and _preferredStores properties
are not globally available. This is a nice trick, and it means that the private implementation details of
your global objects remain private, but, as you’ll learn, it does cause some mild issues with other WinJS
features.

CHAPTER 2 J DATA AND BINDINGS

19

Using Self-executing Functions
The second convention is to use self-executing functions in your JavaScript files. The basic shape of a
self-executing function looks like this:

(function() {
 // ... statements go here ...
})();

Wrapping a function in parentheses and then adding another pair of parentheses immediately
afterward causes the function to be defined and then executed right away. Any variables you define
inside the function are scoped to the function itself and don’t pollute the global namespace. When the
function has been executed, the JavaScript runtime automatically cleans up any variables that have not
been exported globally.

Using Strict Mode
The "use strict" statement applies some constraints on the way you can use JavaScript. One constraint
is that it becomes an error to implicitly create a global variable in a function. You implicitly create a
global variable when you don’t use the var keyword:

var color1 = "blue"; // OK - scope is local to function
color2 = "red"; // Not OK - this is a global variable

The JavaScript runtime will generate an error if you define a variable that is implicitly global. Using
strict mode is entirely optional, but it is good practice, and it disables some of the more dangerous and
odd JavaScript behaviors. You can get full details of the changes that strict mode enforces by reading
Appendix C of the ECMAScript Language Specification at www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Returning to the View Model
Now that I have explained the context and conventions of a Metro JavaScript file, I can turn to the
definition of the view model. The view model for the example Metro application will be simple, and this
part of it, represented by the ViewModel.UserData object, will contain the data that is specific to the user:
the user’s home zip code, their grocery list, and the stores from which they buy groceries.

I defined two arrays that will hold details of the items on the shopping list and the user’s preferred
stores, _shoppingItems and _preferredStores. These properties are not exported as part of the
ViewModel.UserData object because they start with an underscore. To provide access to the data, I have
defined a set of functions that return the array data and that accept new items to be added to the arrays.
The homeZipCode property is public and forms part of the globally available ViewModel.UserData object.
You can read and change the value of this property directly.

J Note The shape and structure of the UserData object are a little odd because I want to show different aspects
of the WinJS API. In a real project, you would treat the data items in a more consistent manner.

CHAPTER 2 J DATA AND BINDINGS

20

So that there is some data to work with in the application, I have added some statements to the self-
executing function to define a zip code, add some stores, and put a few simple items on the shopping
list:

ViewModel.UserData.homeZipCode = "NY 10118";

ViewModel.UserData.addStore("Whole Foods");
ViewModel.UserData.addStore("Kroger");
ViewModel.UserData.addStore("Costco");
ViewModel.UserData.addStore("Walmart");

ViewModel.UserData.addItem("Apples", 4, "Whole Foods");
ViewModel.UserData.addItem("Hotdogs", 12, "Costco");
ViewModel.UserData.addItem("Soda", "4 pack", "Costco");

Using Data Binding
Data binding is the mechanism by which you include data from your view model in the HTML that is
displayed to the user. The WinJS API supports binding through the WinJS.Binding namespace. Data
binding is the key to being able to use a view model in a Metro app. I recommend investing time to learn
how to use the WinJS binding capabilities fully if you want to build scalable and robust Metro
applications.

J Tip WinJS data binding isn’t as complete or flexible as some of the more widely used web app JavaScript
libraries such as Knockout.js, Backbone, and Angular.js. You can easily use these libraries in your Metro app, but
my recommendation is to take the time to understand the WinJS alternative and see how the functionality evolves
as the final version of Windows 8 approaches.

Using Basic Declarative Bindings
The simplest way to use bindings is declaratively, meaning that you include details of the view model
data directly in your HTML markup. Listing 2-2 shows how I can bind to the homeZipCode value in
default.html.

Listing 2-2. A Simple Declarative Binding

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>MetroGrocer</title>

 <!-- WinJS references -->

CHAPTER 2 J DATA AND BINDINGS

21

 <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
 <script src="//Microsoft.WinJS.0.6/js/base.js"></script>
 <script src="//Microsoft.WinJS.0.6/js/ui.js"></script>

 <!-- MetroGrocer references -->
 <link href="/css/default.css" rel="stylesheet">
 <script src="/js/viewmodel.js"></script>
 <script src="/js/default.js"></script>
</head>
<body>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Left Full Container</h1>
 <div class="win-type-x-large">
 The zip code is:

 </div>
 </div>

 <div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Top Right Container</h1>
 </div>

 <div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Bottom Right Container</h1>
 </div>
 </div>
</body>
</html>

I have added a script element that adds viewmodel.js to the HTML document. The most important
addition, however, is the span element and its data-win-bind attribute.

J Tip The order of script elements is important in a Metro app, just like it is in a web app. The code in my
default.js file will depend on my view model, so I must ensure that the script element for viewmodel.js
appears before the one for default.js.

There are two parts to a declarative binding. The first part is the name of a property defined by the
HTMLElement object that represents the element in the Document Object Model (DOM). I have used
innerText, which will set the text content of the span element. The property name is followed by a colon
(:) and then the name of the data item that should be assigned to that property. I have specified
UserData.homeZipCode.

CHAPTER 2 J DATA AND BINDINGS

22

J Tip Declarative bindings will silently fail if you specify any property name that is also a reserved JavaScript
keyword. This means, for example, that you avoid using the class property in bindings and use the className
property instead.

It isn’t enough just to add data-win-binding attributes to HTML elements. I also have to tell the
WinJS API to search through the document so that the binding attributes are found and processed.
Listing 2-3 shows the default.js file. I removed some of the comments that Visual Studio creates and
defined some placeholder functions that I’ll build on later.

Listing 2-3. Processing WinJS Bindings

(function () {
 "use strict";

 var app = WinJS.Application;

 app.onactivated = function (eventObject) {
 if (eventObject.detail.kind ===
 Windows.ApplicationModel.Activation.ActivationKind.launch) {

 if (eventObject.detail.previousExecutionState !==
 Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) {
 performInitialSetup(eventObject);
 } else {
 performRestore(eventObject);
 }
 WinJS.UI.processAll();
 }
 };

 app.oncheckpoint = function (eventObject) {
 performSuspend(eventObject);
 };
 app.start();

 function performInitialSetup(e) {
 WinJS.Binding.processAll(document.body, ViewModel);
 }

 function performRestore(e) {
 // TODO
 }

 function performSuspend(e) {
 // TODO
 }
})();

CHAPTER 2 J DATA AND BINDINGS

23

The import change is the call to the WinJS.Binding.processAll method. The arguments are the
element from which the processing should start and the source of data values for the declarative
bindings. By specifying the document.body element, I have told WinJS to process the entire document.
The second argument tells WinJS to use the ViewModel object as the data source.

Declarative data bindings are relative to the data source, which is why the binding in my example
references UserData.homeZipCode and not ViewModel.UserData.homeZipCode:

The result of these changes is that the content of the span element is set to the value of the
homeZipCode property, as shown in Figure 2-1.

Figure 2-1. Using a declarative binding to display view model values

Creating Dynamic Bindings
The binding that I used in the previous example is static, meaning that there is no ongoing relationship
between the value of the view model property and the value of the span element that contains the
binding declaration. Static bindings are like a snapshot of a view model value. Once the snapshot has
been taken, the value in the markup is fixed, even if the value of the property changes.

Dynamic bindings, where property changes do result in updated elements, are more useful for most
applications. In WinJS, declarative bindings are automatically dynamic when the data property they
depend on is observable. To create an observable property, I have to use the WinJS.Binding.as method in
my view model, as Listing 2-4 shows.

Listing 2-4. Creating an Observable Item in the View Model

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("ViewModel", {
 UserData: WinJS.Binding.as({

 // private members
 _shoppingItems: [],
 _preferredStores: [],

 // public members
 homeZipCode: null,

 getStores: function () {
 return this._preferredStores;

CHAPTER 2 J DATA AND BINDINGS

24

 },

 addStore: function (newStore) {
 this._preferredStores.push(newStore);
 },

 getItems: function () {
 return this._shoppingItems;
 },

 addItem: function (newName, newQuantity, newStore) {
 this._shoppingItems.push({
 item: newName,
 quantity: newQuantity,
 store: newStore
 });
 }
 })
 });

 ViewModel.UserData.homeZipCode = "NY 10118";

 ViewModel.UserData.addStore("Whole Foods");
 ViewModel.UserData.addStore("Kroger");
 ViewModel.UserData.addStore("Costco");
 ViewModel.UserData.addStore("Walmart");

 ViewModel.UserData.addItem("Apples", 4, "Whole Foods");
 ViewModel.UserData.addItem("Hotdogs", 12, "Costco");
 ViewModel.UserData.addItem("Soda", "4 pack", "Costco");
})();

The change here is subtle but important. The WinJS.Binding.as takes an object as its argument and
returns an object whose simple properties are observable. A simple property is one where the value is
primitive, such as a number or a string. Properties whose values are objects, arrays, or functions are not
simple and are not made observable by the as method.

The WinJS.Binding.as method replaces data properties with getters and setters that trigger
notifications when the property value change. Properties that refer to objects, arrays, or functions are
left unchanged by the as method. (I explain how to handle arrays later in this chapter.)

You must call the as method on objects, rather than on properties or simple values. If you call
WinJS.Binding.as directly on a property, you will simply get back the property value, and any bindings
that use the property won’t automatically update:

// this will NOT update
var myObject = {
 myObservableValue: WinJS.Binding.as("MyInitialValue")
};

// this WILL update
var myOtherObject = WinJS.Binding.as({
 myObservableValue: "MyInitialValue"
});

CHAPTER 2 J DATA AND BINDINGS

25

No error is reported when you try to create an observable value using the first approach. WinJS just
quietly ignores the request, and you get a static binding. Following the second technique will allow you
to create bindings that update when the value changes.

Combining Namespaces with Observable Items
There are occasions when the WinJS API creates the impression that different development teams could
have coordinated their efforts more carefully. One such example comes when trying to create an
observable data item on an object that is exported globally using the WinJS.Namespace.define method.

The WinJS.Binding.as method adds a number of private members to an object when it processes
the simple properties, following the common convention of prefixing the names of these members with
an underscore. But, as I explained, the WinJS.Namespace.define method won’t export these members
globally. To get around this conflict, I have adjusted the way that I create my ViewModel.UserData object,
as Listing 2-5 shows.

Listing 2-5. Adjusting the Structure of a Global Object to Export Private Members

...
WinJS.Namespace.define("ViewModel", {
 UserData: WinJS.Binding.as({
 // ... members for UserData object go here...
 })
});
...

The define method doesn’t remove the private members of properties within the object it exports,
which allows me to export the private members of my UserData object by specifying it as a property of
the ViewModel object.

Updating an Observable Data Item
Updates from observable data items flow in only one direction, from the view model to the binding. You
must use conventional JavaScript DOM API techniques to make data updates flow in the other direction,
from the elements to the view model. Listing 2-6 shows the addition of input and button elements to the
markup in default.html for updating the homeZipCode property.

Listing 2-6. Capturing Data That Will Be Used to Update the View Model

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>MetroGrocer</title>
 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
 <script src="//Microsoft.WinJS.0.6/js/base.js"></script>
 <script src="//Microsoft.WinJS.0.6/js/ui.js"></script>
 <!-- MetroGrocer references -->
 <link href="/css/default.css" rel="stylesheet">
 <script src="/js/viewmodel.js"></script>

CHAPTER 2 J DATA AND BINDINGS

26

 <script src="/js/default.js"></script>
</head>
<body>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Left Full Container</h1>

 <div class="win-type-x-large">
 The zip code is:

 </div>
 <div class="win-type-x-large">
 <label for="newZip">Enter new zip code:</label>
 <input id="newZip" data-win-bind="value: UserData.homeZipCode"/>
 <button id="newZipButton">Update Zip Code</button>
 </div>
 </div>

 <div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Top Right Container</h1>
 </div>

 <div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Bottom Right Container</h1>
 </div>
 </div>
</body>
</html>

No Metro-specific technique is required to take the value from the input element and update the
view model value. Listing 2-7 shows the changes to the default.js file that respond to the click event
from the button element and update the view model using the value property of the input element DOM
object.

Listing 2-7. Updating the View Model in Response to the Change Event

...
function performInitialSetup(e) {
 WinJS.Binding.processAll(document.body, ViewModel);

 WinJS.Utilities.query('#newZipButton').listen("click", function (e) {
 ViewModel.UserData.homeZipCode = WinJS.Utilities.query('#newZip')[0].value;
 });
}
...

The WinJS.Utilities namespace contains subset of the functionality found in utility libraries such
as jQuery. The API is broadly the same as jQuery, but instead of the $ shortcut function, querying
elements is done through the WinJS.Utilities.query method. Not all of the functionality of jQuery is
available, but you can use the WinJS.Utilities namespace to locate elements, apply CSS styles and
classes, and set up handlers for events.

CHAPTER 2 J DATA AND BINDINGS

27

In this listing, I have used the query method to search the HTML document for the newZipButton
element and called the listen method on the result to set up a handler for the click event. When the
button is clicked, I locate the input element, read the value property from the object, and assign it to the
homeZipCode property in the view model.

The result from the query method is an array of elements. There is no equivalent to the jQuery val
method, so I treat the response like an array to get the HTMLElement object that represents the first
element that matches my selector and then read the value property. The result is that the user can enter
a new zip code in the input element, and when the button is clicked, the view model zip code value is
updated. Since the update is applied to an observable property, the content of the span element is
updated automatically to show the new value through its binding, as illustrated by Figure 2-2.

J Tip If you have used a web app view model library such as Knockout.js, you might be used to updating view
model values by calling methods, like this: ViewModel.UserData.homeZipCode(myNewValue). Knockout uses
methods to preserve compatibility with older browsers that don’t support getters and setters, including most
previous versions of Internet Explorer. Internet Explorer 10, which is used to display HTML5 Metro apps, does
support getters and setters, which means you can assign values directly, just as I did in the example.

Figure 2-2. Updating an observable value in the view model

Creating Observable Arrays
Making arrays observable requires a little more effort. To begin with, you must use the
WinJS.Binding.List class to create a wrapper around the array you want to work with. Listing 2-8 shows
the List class applied to my viewmodel in the viewmodel.js file.

Listing 2-8. Using the List Class to Create Observable Arrays

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 var shoppingItemsList = new WinJS.Binding.List();
 var preferredStoresList = new WinJS.Binding.List();

 WinJS.Namespace.define("ViewModel", {
 UserData: WinJS.Binding.as({
 homeZipCode: null,

CHAPTER 2 J DATA AND BINDINGS

28

 getStores: function () {
 return preferredStoresList;
 },

 addStore: function (newStore) {
 preferredStoresList.push(newStore);
 },

 getItems: function () {
 return shoppingItemsList;
 },

 addItem: function (newName, newQuantity, newStore) {
 shoppingItemsList.push({
 item: newName,
 quantity: newQuantity,
 store: newStore
 });
 }
 })
 });

 // statements to add test data removed for brevity

})();

Creating a List is simple, but you will encounter problems if you try to do so within the scope of an
object that has passed to the WinJS.Binding.as method (there is a clash of assumptions over the value of
the special this variable). To avoid this problem, define your lists outside of the view model, as I have
done in the example.

Using a List object isn’t the same as using an array. The most important difference is that you
cannot use array indexers to read or write data values. Instead, you must use the getAt and setAt
methods. Other array members, such as push and pop, are supported by List, and there are some useful
additions for sorting and projecting the contents of List objects.

Another important difference is that you cannot access array values using declarative bindings.
Instead, you must set values in the DOM using JavaScript and handle events emitted by the List object
to keep those values up-to-date. Listing 2-9 shows elements in the default.html file that display the
number of items in one of the view model lists and some buttons to add and remove items.

Listing 2-9. Elements for Interacting with a List Object

...
<div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Left Full Container</h1>

 <div class="win-type-x-large">
 The last item is
 </div>
 <div class="win-type-x-large">
 <button id="addItemButton">Add Item</button>
 <button id="removeItemButton">Remove Item</button>

CHAPTER 2 J DATA AND BINDINGS

29

 </div>
</div>
...

There are no special data attributes in these elements, just regular HTML. Everything happens in the
default.js file, as shown in Listing 2-10.

Listing 2-10. Using JavaScript to Bridge Between HTML Elements and a WinJS.Binding.List

...
function performInitialSetup(e) {

 WinJS.Utilities.query('button').listen("click", function (e) {
 if (this.id == "addItemButton") {
 ViewModel.UserData.addItem("Ice Cream", 1, "Vanilla", "Walmart");
 } else {
 ViewModel.UserData.getItems().pop();
 }
 });

 var setValue = function () {
 var list = ViewModel.UserData.getItems();

 document.getElementById("listInfo").innerText =
 list.getAt(list.length - 1).item;

 };

 var eventTypes = ["itemchanged", "iteminserted", "itemmoved", "itemremoved"];
 eventTypes.forEach(function (type) {
 ViewModel.UserData.getItems().addEventListener(type, setValue);
 });

 setValue();
}
...

The List object defines four events that are triggered when the data items change. These events are
itemchanged, iteminserted, itemmoved, and itemremoved. The List object defines an addEventListener
method that allows for the registration of event handler functions for these events. In the listing, I
register the same handler function for all four events; it updates the innerText property of the span
element to display the item property of the first element in the List.

The two button elements add and remove items from the List. I have left the addItem method in the
view model because I prefer to have little helper functions like this to make the structure of the data
objects more consistent, but I could have directly called the push method on the List object to get the
same effect. You can see the result in Figure 2-3.

CHAPTER 2 J DATA AND BINDINGS

30

J Tip I was able to remove the call to the WinJS.Binding.processAll method from this listing because there
are no declarative bindings in the HTML document.

Figure 2-3. Displaying details of List objects in HTML elements

Using Templates
List objects come into their own when used with binding templates, which allow for regions of markup
to be duplicated for a series of data values. Templates are defined within the HTML document and
annotated with the data-win-control attribute, as shown in Listing 2-11.

Listing 2-11. Adding a Template to the HTML Document

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>MetroGrocer</title>
 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
 <script src="//Microsoft.WinJS.0.6/js/base.js"></script>
 <script src="//Microsoft.WinJS.0.6/js/ui.js"></script>
 <!-- MetroGrocer references -->
 <link href="/css/default.css" rel="stylesheet">
 <script src="/js/viewmodel.js"></script>
 <script src="/js/default.js"></script>
</head>
<body>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Grocery List</h1>

 <table id="listTable" class="type-table-header">
 <thead>
 <tr>
 <th>Quantity</th>
 <th class="itemName">Item</th>
 <th>Store</th>
 </tr>
 </thead>

CHAPTER 2 J DATA AND BINDINGS

31

 <tbody id="itemBody"></tbody>
 </table>
 </div>

 <div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Top Right Container</h1>
 </div>

 <div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Bottom Right Container</h1>
 </div>
 </div>

 <!-- template for grocery list items -->
 <table>
 <tbody id="itemTemplate" data-win-control="WinJS.Binding.Template">
 <tr class="groceryItem">
 <td data-win-bind="innerText: quantity"></td>
 <td data-win-bind="innerText: item"></td>
 <td data-win-bind="innerText: store"></td>
 </tr>
 </tbody>
 </table>
 <!-- end of template for grocery list items -->
</body>
</html>

There are two new table elements in this document. The first one, with the id attribute of
listTable, is what the user will see. This table has a header with column titles, but the tbody element is
empty. This is where I will use a template to insert a row for each item in the grocery list.

The second table element contains the template. The template itself is defined by the tbody
element, but it is an oddity of WinJS templates that they need to be within well-formed HTML. You can’t
just define the tbody element as a child of the body, for example, because tbody elements aren’t allowed
to be children of body elements. This means you end up with some redundant elements in the HTML
document when using templates.

Using the Template
The template is denoted by a data-win-control value of WinJS.Binding.Template. This tells WinJS to
process the element, look for declarative bindings, and add some special properties to the HTMLElement
object that represents the template element in the DOM. As mentioned previously, I like to break my
projects up so that there JavaScript files for each area of functionality. To that end, I have created a new
JavaScript file called ui.js, which is shown in Listing 2-12.

CHAPTER 2 J DATA AND BINDINGS

32

Listing 2-12. Using a Template in the ui.js File

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("UI.List", {
 displayListItems: function () {

 var templateElement = document.getElementById("itemTemplate");
 var targetElement = document.getElementById("itemBody");

 WinJS.Utilities.empty(targetElement);

 var list = ViewModel.UserData.getItems();

 for (var i = 0; i < list.length; i++) {
 templateElement.winControl.render(list.getAt(i), targetElement);
 }

 WinJS.Utilities.children(targetElement).listen("click", function (e) {
 ViewModel.State.selectedItemIndex = this.rowIndex - 1;
 WinJS.Utilities.children(targetElement).removeClass("selected");
 WinJS.Utilities.addClass(this, "selected");
 });
 },

 setupListEvents: function () {
 var eventTypes = ["itemchanged", "iteminserted", "itemmoved", "itemremoved"];
 var itemsList = ViewModel.UserData.getItems();
 eventTypes.forEach(function (type) {
 itemsList.addEventListener(type, UI.List.displayListItems);
 });
 },
 });
})();

I have defined a UI namespace, which contains a List object with displayListItems and
setupListEvents functions. In the displayListItems function, I locate the HTMLElement objects that
represent the template and the target for the generated elements. I have used the
document.getElementById method to locate the elements by their id attribute values.

J Tip The bold statement in the listing causes an odd Visual Studio problem. Trying to use autocompletion in this
file causes Visual Studio to crash. The only way to avoid this problem is to disable the autocompletion feature for
JavaScript files in the Visual Studio Tools � Options menu.

CHAPTER 2 J DATA AND BINDINGS

33

The WinJS.Utilities.empty method removed the children for an element, which I do so that I don’t
just add new rows to the table each time the function is called.

To iterate through the items in the WinJS.Binding.List object, call the winControl.render method
on the template object for each one. The winControl is created by the WinJS.UI.processAll method, and
it returns the Metro-specific properties created for different types of user interface controls.

The render method is added to those elements whose data-win-control attribute is
WinJS.Binding.Template. The arguments to the render method are the data item to process and the
target element to which the newly generated content will be added, so, by calling the render method for
each item in my grocery List object, I am able to create table rows to populate my Metro app layout.

Once I have created the table rows, I use the WinJS.Utilities.children method to set up an event
listener for the click events on the newly tr elements.

Finally, I set the ViewModel.State.selectedItemIndex property (which I will define shortly) to
indicate which row has been selected when the click event is received, using the rowIndex property that
is available for tr elements and ensuring that the selected class is applied only to the row the user has
selected.

Responding to List Changes
The other function I defined in the UI namespace is setupListEvents. This function listens for each of
the list events I described in the previous section and, when they are received, calls the displayListItems
function.

This allows me to use my template to render the contents of the table element whenever the
contents of the list change. This is a crude way of handling list changes, but it is sufficient for a simple
example. The event object passed to the handler function contains details of which list element has
changed, which is essential information when implementing a more elegant approach.

J Tip I set up the event handlers in a separate function so that I can call displayListItems repeatedly. If I
had set up the event handlers inside the displayListItems function, then a new set of handlers would be created
each time the contents of the list changed.

Tracking the Selected Item
In the displayListItems function, I updated the value of the ViewModel.State.selectedItemIndex
property to keep track of which item in the table element had been selected. It is now time to define this
property. Listing 2-13 shows the addition to the viewmodel.js file.

Listing 2-13. Defining the selectedItemIndex Property

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 var shoppingItemsList = new WinJS.Binding.List();

CHAPTER 2 J DATA AND BINDINGS

34

 var preferredStoresList = new WinJS.Binding.List();

 WinJS.Namespace.define("ViewModel", {
 UserData: WinJS.Binding.as({
 homeZipCode: null,

 getStores: function () {
 return preferredStoresList;
 },

 addStore: function (newStore) {
 preferredStoresList.push(newStore);
 },

 getItems: function () {
 return shoppingItemsList;
 },

 addItem: function (newName, newQuantity, newStore) {
 shoppingItemsList.push({
 item: newName,
 quantity: newQuantity,
 store: newStore
 });
 }
 }),

 State: WinJS.Binding.as({
 selectedItemIndex: -1
 })

 });

 // ...test data removed for brevity ...

})();

I use the State object to differentiate between data required for the current state of the app and data
created by the user (which is represented by the UserData object).

Applying the Template to the App
Before you use a template, you must ensure that the WinJS.UI.processAll method has been called. This
method processes the HTML document, looking for elements that have the data-win-control attribute
and configuring their capabilities. This includes finding and processing templates.

Listing 2-14 shows the changes to the performInitialSetup function defined in the default.js file
where I added the call to the displayListItems and setupListEvents functions after the call to
WinJS.UI.processAll (and where I removed the code for the previous example from the
performInitialSetup function).

CHAPTER 2 J DATA AND BINDINGS

35

Listing 2-14. Ensuring That Elements Are Processed Before Using a Template

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 });
}
...

The processAll method does its work in the background, allowing the JavaScript statements that
follow a call to processAll to be executed at the same time. Using background tasks is a good idea, but
since my displayListItems function relies on the winControl property that is created by processAll, I
need to make sure that the background task has been completed before I use my template.

Understanding Promises
Metro apps rely on the JavaScript Promise pattern to represent background tasks. The result from the
processAll method is a WinJS.Promise object, which is the Metro implementation of the JavaScript
Promise pattern.

To use the Promise object, I call the then method on the object, passing in a function that will be
executed when the task has completed. In my example, this function makes the calls to the UI.List
namespace that depend on the processAll method having completed its work.

The then method takes optional second and third arguments that define functions that will be
executed if there is an error and that will receive process information, but for this book I just assume that
all background tasks complete properly. I recommend you take the time to handle any errors properly in
your own projects.

J Tip This is the most basic and common use of a JavaScript promise. Take a look at the API definition for the
WinJS.Promise object to learn about the other capabilities available. Be careful, though; JavaScript promises are a
simplified representation of some complex parallel programming concepts, and you can get into a lot of trouble
using them if you are not careful. Part of the problem is that JavaScript supports background tasks but doesn’t
provide the mechanisms required to safely coordinate access to data. This is like providing matches and gas but
hiding the fire extinguisher. You can use JavaScript promises to create rich parallel-enabled applications, but it
requires care and skill.

The final step in applying my template is to add my ui.js file to default.html, as shown in Listing 2-
15.

http://blog.thepete.net/2011/07/javascript-promises.html

CHAPTER 2 J DATA AND BINDINGS

36

Listing 2-15. Adding the ui.js File to default.html

...
<link href="/css/list.css" rel="stylesheet">
<link href="/css/default.css" rel="stylesheet">
<script src="/js/viewmodel.js"></script>
<script src="/js/ui.js"></script>
<script src="/js/default.js"></script>
...

J Note As you can see, I have also defined a new stylesheet called list.css. The file contains some simple
CSS styles to format the list items and is included as part of the source code download that accompanies this book
and that is available without charge from Apress.com.

The WinJS.UI.processAll method sets the CSS display property to none so that the template isn’t
visible to the user. You can see the result of using the template to populate the table in Figure 2-4.

Figure 2-4. Generating table rows using a template and a List object

J Note I added some styles to default.css to control the appearance of the table. There is nothing specific to
Metro in these styles, and you can find the changes in the source code download that accompanies this book
(available from Apress.com).

Summary
In this chapter, I showed you how to create a view model in a Metro application, how to make it
available globally, and how to make data items observable. The current state of the WinJS API makes this
a somewhat awkward process, but the reward is the ability to use declarative bindings and templates to
populate your HTML with application data.

C H A P T E R 3

J J J�����

37

Application Controls

For the most part, the user interface controls that you use in a Metro app are the same as the ones you
use when creating a regular HTML web app. If you want to gather data from the user, then you can use
elements such as select, input, and textarea. If you want to allow the user to commence an action, then
you can use button elements, and so on. The appearance of these elements in your app is controlled by a
combination of the CSS in your project and the capabilities of Internet Explorer 10.

In addition to these basic controls, the WinJS API defines some that are specific to Metro. In this
chapter, I show you how to use the most important of these controls, focusing on those that are essential
to implementing the Metro app experience, both for the user and for the developer.

I begin by showing you the AppBar and Flyout controls. The AppBar is a core feature of all Metro
apps and is the mechanism by which users perform interactions that are not directly possible using the
data and controls in the main application layout. Flyouts are a way of providing consistent pop-ups to
users and are closely associated with AppBars.

Not all WinJS controls are for the benefit of the user. In this chapter, I show you how to use the
HTMLControl to import fragments of HTML into your application. The HTMLControl is useful only for
static HTML content, so I also show you how to use the Pages feature to load HTML and its associated
JavaScript and CSS. These techniques allow for the effective partitioning of application content and
functionality, which makes for an easier development experience and simpler testing and maintenance.
For completeness, I finish this chapter showing you how to import external content into your Metro app,
which can be useful if you have invested in an existing content infrastructure and want to incorporate it
into your application. Table 3-1 provides the summary for this chapter.

Table 3-1. Chapter Summary

Problem Solution Listing

Denote an AppBar. Define a div element with a data-win-control
attribute of WinJS.UI.AppBar.

1, 3, 4

Import a fragment of static
content.

Use the HTMLControl feature. 2

Denote a flyout. Define a div element with a data-win-control
attribute of WinJS.UI.Flyout.

5

CHAPTER 3 J APPLICATION CONTROLS

38

Problem Solution Listing

Associate a flyout with an
AppBar button.

Configure the button element so that the type
property is flyout and the flyout property is set to
the id of the flyout div element.

6

Manage a flyout. Use the DOM API to manage the controls in the
flyout and the members of the flyout div element’s
winControl property to manage the flyout
functionality.

7, 8

Load content into a Metro app. Create fragments of HTML and use the
WinJS.UI.Pages.define method to register a
callback function that will be executed when the
content is loaded. Use the WinJS.UI.Pages.render
method to load the content.

9 through 12

Load HTML, JavaScript, and
CSS into a Metro app together.

Create an HTML document and use script and
link elements to reference the JavaScript and CSS
files. Use the WinJS.UI.Pages.define and
WinJS.UI.Pages.render methods to register a
callback function and load the document.

13 through 15

Display content that is external
to a Metro app.

Use an iframe and ensure that the Internet (Client)
permission is declared in the app’s manifest.

16 through 18

Adding an AppBar
The AppBar appears at the bottom of the screen when the user makes an upward swiping gesture or
right-clicks with the mouse. The emphasis in the Metro UI seems to be to have as few controls as is
possible on the main layout and rely on the AppBar as the mechanism for any interaction that is not
about the immediately available functionality.

I could define the HTML for AppBars directly in default.html, but as I mentioned at the start of this
chapter, WinJS supports dynamically loading and inserting fragments of HTML. To demonstrate this
feature, I have created an html folder in the Solution Explorer and created an appbar.html file using the
HTML Page item in the Add New Item dialog. The contents of appbar.html, which contains the definition
of my AppBar, are shown in Listing 3-1.

J Tip Ensure that you are not running the debugger when you create the html folder. If you are, Visual Studio
will create a folder called NewFolder but won’t let you change the name until the debugger has stopped.

CHAPTER 3 J APPLICATION CONTROLS

39

Listing 3-1. Defining an AppBar in the appbar.html File

<div id="appBar" data-win-control="WinJS.UI.AppBar">
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{section: 'global', label: 'New Item', icon: 'add'}">
 </button>
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{section: 'global', label: 'Stores',
 icon: 'shop'}">
 </button>
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{section: 'global', label: 'Zip Code', icon: 'home'}">
 </button>
 <button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id: 'done', disabled: true,
 section: 'selection', label: 'Done', icon: 'accept'}">
 </button>
</div>

The AppBar is denoted by a div element that has the data-win-control set to WinJS.AppBar. An
AppBar contains one or more button elements whose data-win-control attribute is set to
WinJS.UI.AppBarCommand. Each button requires configuration information, and this is provided through
the data-win-options attribute, following the format of a simple JavaScript object. I’ll explain the
meaning of the configuration properties shortly.

J Tip You can also specify AppBar buttons using a series of nested HTML elements, which obviates the need
for the JavaScript-like configuration object. I don’t like having to embed fragments of code into my markup, but it
is something that pervades WinJS, so I tend to stick with the approach shown in the listing. It is ugly, but it is
consistent with the way other controls work.

Listing 3-2 shows how I import the HTML fragment defined in appbar.html into the default.html
document.

Listing 3-2. Importing an HTML Fragment into default.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>MetroGrocer</title>
 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet">
 <script src="//Microsoft.WinJS.0.6/js/base.js"></script>
 <script src="//Microsoft.WinJS.0.6/js/ui.js"></script>
 <!-- MetroGrocer references -->
 <link href="/css/list.css" rel="stylesheet">
 <link href="/css/default.css" rel="stylesheet">

CHAPTER 3 J APPLICATION CONTROLS

40

 <script src="/js/viewmodel.js"></script>
 <script src="/js/ui.js"></script>
 <script src="/js/default.js"></script>
</head>
<body>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Grocery List</h1>

 <table id="listTable" class="type-table-header">
 <thead>
 <tr>
 <th>Quantity</th>
 <th class="itemName">Item</th>
 <th class="store">Store</th>
 </tr>
 </thead>
 <tbody id="itemBody"></tbody>
 </table>
 </div>
 <div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Top Right Container</h1>
 </div>
 <div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Bottom Right Container</h1>
 </div>
 </div>

 <!-- import HTML fragments -->
 <div data-win-control="WinJS.UI.HtmlControl"
 data-win-options="{uri: '/html/appbar.html'}"></div>
 <!-- end of HTML fragments -->

 <!-- template for grocery list items -->
 <table>
 <tbody id="itemTemplate" data-win-control="WinJS.Binding.Template">
 <tr class="groceryItem">
 <td data-win-bind="innerText: quantity"></td>
 <td data-win-bind="innerText: item"></td>
 <td data-win-bind="innerText: store"></td>
 </tr>
 </tbody>
 </table>
 <!-- end of template for grocery list items -->
</body>
</html>

When you call the WinJS.UI.processAll method, WinJS finds all div elements whose data-win-
control attribute is set to WinJS.UI.HtmlControl and sets their content to the HTML fragment specified
in the data-win-options attribute. You can’t specify the fragment file directly; instead, you have to use
the JavaScript-like format I have shown in the listing, specifying the file name as the value for the uri
property.

CHAPTER 3 J APPLICATION CONTROLS

41

J Tip The HTMLControl is only for loading fragments of content that don’t need to execute script or define any
CSS. This works in my example because the JavaScript that sets up the AppBar from the HTML fragment is part of
default.js, which is already associated with the main HTML document. And, as I describe in a moment, I have to
take precautions to make sure that the HTML fragment is loaded before performing the AppBar setup. Later in this
chapter, I show you WinJS pages, which support their own CSS and JavaScript.

The contents of the loaded file are processed automatically, and WinJS finds and configures my
AppBar. You don’t have to worry about making the AppBar appear and disappear. This is configured by
WinJS, and the AppBar will appear when the user right-clicks or swipes up from the bottom of the
screen. You can see how the AppBar appears in Figure 3-1.

Figure 3-1. Adding an AppBar to the example application

I have magnified a couple of the buttons in the figure to make them easier to see the effect of the
configuration properties applied to each AppBar button. The id and disabled properties set the
corresponding attributes on the button element, and the label property sets the text displayed
underneath the button.

There are two regions on an AppBar, and the section property specifies which one a button appears
in. If the section property is set to global, then the button will be toward the right side of the AppBar.
This area is for actions that affect the entire application. A button whose section is selection performs
actions that apply to the currently selected item and are displayed on the left of the AppBar.

The icon property sets the button image. You can specify a custom PNG file for this property or use
one of the symbol characters defined in the Segoe UI Symbol font. You can refer to these icons either by
specifying one of the values from the WinJS.UI.AppBarIcon enumeration or directly by its character code
(which you can get using the Windows 8 Character Map tool). As an example, I specified the add icon for
one of the buttons, which corresponds to the WinJS.UI.AppBarIcon.add value or the character code
\uE109.

J Tip There are a lot of icons to choose from, far more than the API documentation suggests. Open the js/ui.js
file and search for icon to see the list defined by the enumeration. The enumeration just contains common icons;
there are even more defined by the font itself.

CHAPTER 3 J APPLICATION CONTROLS

42

Implementing App Bar Buttons
In this section, I will add the code to implement the selection-specific Done button I added to the
AppBar. To do this, I have defined a UI.AppBar namespace in the ui.js file and created the setupButtons
function, which you can see in Listing 3-3.

Listing 3-3. Setting Up Support for the AppBar Buttons

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("UI.AppBar", {
 setupButtons: function () {
 var doneButton = document.getElementById("done");
 ViewModel.State.bind("selectedItemIndex", function (newValue, oldValue) {
 doneButton.disabled = (newValue == -1);
 });

 doneButton.addEventListener("click", function (e) {
 var selectedIndex = ViewModel.State.selectedItemIndex;
 ViewModel.UserData.getItems().splice(selectedIndex, 1);
 ViewModel.State.selectedItemIndex = -1;
 });
 }
 });

 WinJS.Namespace.define("UI.List", {
 // ...code removed for brevity...
 });
})();

Since AppBar buttons are created from HTML button elements, I can use the standard disabled
property to control the button state and handle the click event to respond to user interaction.

I want to control the state of the button in response to changes to the
ViewModel.State.selectedItemIndex property in the view model. To monitor an object with observable
properties, you use the bind method to register a function that will be executed when the value the
property changes. In this listing, I have created a binding for the selectedItemIndex property so that I
can change the status of the button when the user makes a selection. This is a nice demonstration of how
you can use WinJS data bindings to tie view model data, event handler functions, and HTML elements
together.

The last step is to call the setupButtons function from within performInitialSetup in the default.js
file, as shown in Listing 3-4. Notice that, once again, I make the call to my function within the then
callback provided by the Promise object so that I can be sure that my HTML fragment has been loaded
and processed before I start performing operations on the elements it contains.

CHAPTER 3 J APPLICATION CONTROLS

43

Listing 3-4. Calling the setupButtons Function

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 });
}
...

And, with these additions, I have a basic AppBar in place. If you select an item in the grocery list, the
Done button will be enabled, allowing you to reveal the AppBar and mark the item as completed,
removing it from the list. I am not going to implement functionality for all of the AppBar buttons, but in
the following section I’ll wire up the Add button so that I can demonstrate how to create and use a
Flyout.

Adding Flyouts
Flyouts are pop-up windows that you can use to provide information to, or gather data from, the user.
Flyouts are often used in conjunction with AppBar buttons, and in this section I show you how to use a
flyout to complete the Add Item AppBar button. To begin, I have created a new file in the html folder
called addItemFlyout.html, the contents of which are shown in Listing 3-5.

Listing 3-5. Defining a Flyout

<div class="flyout" id="addItemFlyout" data-win-control="WinJS.UI.Flyout">
 <div>
 <label for="item">Item:</label>
 <input id="item" placeholder="e.g. Apples">
 </div>
 <div>
 <label for="quantity">Quantity:</label>
 <input id="quantity" placeholder="e.g. 4"/>
 </div>
 <div>
 <label for="stores">Store:</label>
 <select id="stores"></select>
 </div>
 <div class="rightAlign">
 <button id="addItemButton">Add</button>
 </div>
</div>

Flyouts are denoted by a div element whose data-win-control attribute is set to WinJS.UI.Flyout.
This is the only limitation to creating a flyout, and I am free to add any content inside the div element
that I need to support my interaction with the user. In this example, I have used some standard HTML
form controls to gather details of the new item from the user.

CHAPTER 3 J APPLICATION CONTROLS

44

J Tip If you are used to developing web apps, you will be accustomed to building data-gathering interactions
around the HTML form element. In a Metro app, the form element is that important because the majority of
interactions are handled entirely within the client. That said, you can still use the form element with Ajax requests
if you want to submit data to a server.

Having defined the flyout, I can now associate it with my AppBar, which I do by adding
configuration properties to the button element in the appbar.html file, as shown in Listing 3-6.

Listing 3-6. Associating a Flyout with an AppBar Button

...
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{section: 'global', label: 'New Item', icon: 'add',
 type:'flyout', flyout: 'addItemFlyout'}">
</button>
...

To specify the flyout associated with the button, I set the type property to flyout and the flyout
property to the id of the flyout element. When the user clicks the button, my flyout is automatically
displayed, as shown in Figure 3-2.

J Tip A type value of toggle creates an AppBar button that the user can switch on or off. A value of button is
equivalent to not setting a type property at all, and AppBar buttons work just like regular HTML buttons (as
demonstrated earlier in this chapter).

Figure 3-2. Associating a flyout with an AppBar button

CHAPTER 3 J APPLICATION CONTROLS

45

To bring my flyout HTML fragment into the application, I have to update default.html and make
use of HTMLControl again:

...
<!-- import HTML fragments -->
<div data-win-control="WinJS.UI.HtmlControl"
 data-win-options="{uri: '/html/appbar.html'}"></div>
<div data-win-control="WinJS.UI.HtmlControl"
 data-win-options="{uri: '/html/addItemFlyout.html'}"></div>
<!-- end of HTML fragments -->
...

J Tip To style the flyout, I added a new CSS file to the project called flyouts.css and added a link element to
default.html to import the styles it contains into the Metro app. The styles are very simple, and you can see
them by downloading the source code that accompanies this book from Apress.com.

Managing the Controls in a Flyout
I have shown the fully implemented flyout in Figure 3-2, but getting to this point requires some
additional code. I need to populate the select element with details of the stores in the view model and
handle the click event for the Add button so that the new item is added to the list. Listing 3-7 shows the
changes to the UI namespace in the ui.js file to handle both of these areas.

Listing 3-7. Adding Support for the Flyout Controls to the UI Namespace

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("UI.Flyouts", {
 setupAddItemFlyout: function () {

 var selectElement = WinJS.Utilities.query('select#stores')[0];
 WinJS.Utilities.empty(selectElement);
 var list = ViewModel.UserData.getStores();
 list.forEach(function (item) {
 var newOption = document.createElement("option");
 newOption.text = item;
 selectElement.add(newOption);
 });

 document.getElementById("addItemButton").addEventListener("click",
 function () {
 var item =
 WinJS.Utilities.query("#addItemFlyout #item")[0].value;

CHAPTER 3 J APPLICATION CONTROLS

46

 var quantity =
 WinJS.Utilities.query("#addItemFlyout #quantity")[0].value;
 var store = WinJS.Utilities.query("#addItemFlyout #stores")[0].value;
 ViewModel.UserData.addItem(item, quantity, store);
 document.getElementById("addItemFlyout").winControl.hide();
 document.getElementById("appBar").winControl.hide();
 });
 }
 });

 // ... other namespace definitions omitted for brevity

})();

I have created a UI.Flyouts object that defines the setupAddItemFlyout function. This function
populates the select control from the view model, and when the Add button is clicked, it reads the
values from the input and select elements and uses them to create a item in the grocery list.

When I am done with the flyout, I locate the div element and use the winControl property to get the
WinJS members that are specific to flyouts. The hide method dismisses the flyout and returns the user to
the main layout. I perform the same task on the AppBar element, which would otherwise be left visible
when the flyout is closed. See the WinJS API documentation for details of the other methods available
through the winControl property of AppBar and flyout elements.

Of course, defining this code isn’t enough; I have to call the function from the default.js file, as
shown in Listing 3-8.

Listing 3-8. Calling the Code to Set Up the Flyout Controls

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();
 });
}
...

Using Pages
Earlier in the chapter, I used HTMLControl to import fragments into my main HTML document. The
main limitation in using HTMLControl is that you can’t arrange to be notified when your content is
loaded. This is fine for content when you are using fragments just to reuse regions of markup, but the
HTMLControl isn’t much help if you want to load content fragments dynamically in response to user
input.

HTMLControl is a simple declarative wrapper around a more complex WinJS feature called pages.
Pages must be set up and managed in JavaScript, but they provide a richer set of functions and, crucially,
support callbacks that can be used to integrate content at any point in the application’s life cycle.

CHAPTER 3 J APPLICATION CONTROLS

47

J Caution The pages feature is pretty raw, and it looks like they were a late addition to the Windows 8
Consumer Preview, replacing a similar feature that was incredibly difficult to use. This is an area that I suspect will
change again before the final Windows 8 release.

To demonstrate the pages feature, I am going to implement the top-right region of the layout,
allowing the user to edit the contents of the currently selected item and display a useful message when
no selection has been made.

I need do to three things to use a page. The first is to define the HTML, the second is to write the
JavaScript that will be executed when the HTML is loaded, and the third thing is to load and display the
HTML as part of the application.

Defining the HTML
For the first step, I have created a file called noSelection.html in the html folder of the project. The
contents of this file are shown in Listing 3-9. This is the markup that will be displayed to the user when
no grocery list item has been selected.

Listing 3-9. The noSelection.html File

<div id="noselectionContainer" class="win-type-x-large">
 <p>There are items on your list</p>
 <p>Select to edit</p>
</div>

This is the complete content of the HTML file; it contains just the elements I want to insert into the
document, which is the same approach when I used the HTMLControl feature previously. I’ll show you
how to use complete HTML documents shortly, but I wanted to emphasize that the pages feature will
quite happily operate on fragments of markup, which is how I tend to break up my applications.

Creating the JavaScript Callback
The second step is to define the code that will be executed when the HTML is loaded. Remember, this is
the main benefit of using the pages feature; I can rely on the code I specify being executed every time I
display the fragment, allowing me to configure the elements to match the present state of the app.
Listing 3-10 shows the contents of the pages.js file, which I created in the js folder.

Listing 3-10. Defining the Code to Be Executed When a Page Fragment Is Loaded

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.UI.Pages.define("/html/noselection.html", {
 ready: function (targetElement) {

CHAPTER 3 J APPLICATION CONTROLS

48

 document.getElementById("numberCount").innerText
 = ViewModel.UserData.getItems().length;
 }
 });
})();

The callback function is set up through the WinJS.UI.Pages.define method. The arguments are the
URL of the HTML file that will be loaded and an object whose properties define the functions that will be
executed when this happens. In the Consumer Preview, the only property that works reliably is ready,
and the function assigned to this property will be executed when the HTML has been loaded and
processed by the Metro runtime.

In this example, my ready callback function locates the span element in the noSelection.html
markup and sets its content to be the number of items on the grocery list. I have added a script element
to the default.html file to load pages.js:

...
<!-- MetroGrocer references -->
<link href="/css/list.css" rel="stylesheet">
<link href="/css/flyouts.css" rel="stylesheet">
<link href="/css/default.css" rel="stylesheet">
<script src="/js/viewmodel.js"></script>
<script src="/js/ui.js"></script>
<script src="/js/pages.js"></script>
<script src="/js/default.js"></script>
...

Loading and Displaying the HTML
The define method doesn’t load the HTML; it just sets up the callbacks. To display the content, I need to
pick a place to insert it in the default.html file. You can see the addition in Listing 3-11. No special
attributes are required for the placeholder; a regular div element will do, ideally with an id attribute so
you can easily locate it later.

Listing 3-11. Adding a Page Placeholder Element in default.html

...
<div id="topRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Item Detail</h1>
 <div id="itemDetailTarget"></div>
</div>
...

The final step is to display the page within the target element. You can see the additions to the
default.js file in Listing 3-12.

Listing 3-21. Loading a WinJS Page

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();

CHAPTER 3 J APPLICATION CONTROLS

49

 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 WinJS.UI.Pages.render("/html/noSelection.html", targetElement);
 });
}
...

The first two lines locate the placeholder element and remove any child elements that already exist
there. The final statement is the important one: I display the page by calling the WinJS.UI.Pages.render
method. The arguments to this method are the URL of the HTML document and the placeholder
element where the content will be inserted.

When I call the render method, WinJS not only inserts the HTML from the specified file into the
document but ensures that my callback function, the one I defined in pages.js, is executed. This allows
me to process the elements, in this case, to insert details about how many items are on the grocery list,
as shown in Figure 3-3.

Figure 3-3. Using a page to associate a callback function with a fragment of HTML

Loading a Complete HTML Document
A variation on the page example is to work with complete HTML documents, rather than fragments. The
basic approach is the same, but I can include script and link elements to load JavaScript and CSS files
that are specific to the document. This means I can keep my callback definition code and CSS styles
separate from the rest of the application. To begin, I create a new folder called pages and another one
called itemDetail inside it. I then add a new HTML file called itemDetail.html, which is shown in Listing
3-13.

Listing 3-13. The itemDetail.html File

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <script src="itemDetail.js"></script>
 <link href="itemDetail.css" rel="stylesheet">
</head>
<body>
 <div id="itemEditor">
 <div>
 <label for="item">Item:</label><input id="item">

CHAPTER 3 J APPLICATION CONTROLS

50

 </div>
 <div>
 <label for="quantity">Quantity:</label><input id="quantity">
 </div>
 <div>
 <label for="stores">Store:</label>
 <select id="stores" size="3"></select>
 </div>
 </div>
</body>
</html>

The markup in this file provides a select and two input elements to allow the user to edit the details
of a grocery list item. The difference from the previous example is that this is a complete HTML
document that contains a script element that imports the itemDetail.js file and a link element that
imports the itemDetail.css file, both of which I have created in the same pages/itemDetail folder,
alongside itemDetail.html.

J Tip The itemDetail.css file just contains some basic CSS styles; you can see these in the source code
download if you are interested, but there is nothing new or Metro-specific to see.

The itemDetail.js file contains the callback for when the page is loaded, as shown in Listing 3-14.

Listing 3-14. Defining the Page Callback for the itemDetail.html Page

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.UI.Pages.define("/pages/itemDetail/itemDetail.html", {
 ready: function (targetElement) {

 var selectedIndex = ViewModel.State.selectedItemIndex;
 var selectedItem = ViewModel.UserData.getItems().getAt(selectedIndex);

 document.getElementById("item").value = selectedItem.item;
 document.getElementById("quantity").value = selectedItem.quantity;

 var selectElement = WinJS.Utilities.query('select#stores')[0];
 WinJS.Utilities.empty(selectElement);
 var list = ViewModel.UserData.getStores();
 list.forEach(function (item) {
 var newOption = document.createElement("option");
 newOption.text = item;
 if (selectedItem.store == item) {

CHAPTER 3 J APPLICATION CONTROLS

51

 newOption.selected = true;
 }
 selectElement.add(newOption);
 });

 WinJS.Utilities.query('#itemEditor input, #itemEditor select')
 .listen("change", function () {

 ViewModel.UserData.getItems().setAt(selectedIndex, {
 item: document.getElementById("item").value,
 quantity: document.getElementById("quantity").value,
 store: document.getElementById("stores").value
 });
 });
 }
 })
})();

When I call the define method, I have to specify the complete path to the HTML document that I
want to be notified about. This means pages/itemDetail/itemDetail.html rather than just
itemDetail.html. This is different from the links to the CSS and JavaScript files defined inside
itemDetail.html, which are relative (i.e., just itemDetail.js).

Since the Metro runtime for JavaScript apps is essentially a regular browser, the JavaScript code is
executed as soon as the script element is processed. This means that the callback function is registered
before the document has been completely loaded and will then be called once the document has been
completely processed. This provides the foundation for a nice way to keep pages self-contained, and you
don’t need to have the callbacks defined alongside the main app code.

The callback function in this example is pretty simple and just uses the values from the input and
select elements to modify the list of grocery items using the WinJS.Binding.List.setAt method. The
setAt method completely replaces the item in the list and triggers an itemchanged event, which I showed
you in Chapter 2. This event causes the table element displaying the list items to be updated with the
changes the user has made.

J Tip Since this page is a complete HTML document, you can reference multiple JavaScript and CSS files; in
fact, if you create a new Page item from the Add � New Item menu, Visual Studio will create an HTML file, a
JavaScript file, and a CSS file and link them together.

Switching Between Pages
Now that I have two pages, I can switch between them in the main layout. I want to display the
noSelection.html page when no item has been selected and the itemDetail.html page when a selection
has been made. The simplest way to arrange this is to bind to the ViewModel.State.selectedItemIndex
property. Listing 3-15 shows the changes in the default.js file.

CHAPTER 3 J APPLICATION CONTROLS

52

Listing 3-15. Switching Between Two Pages in Response to a View Model Update

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html" :
 "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });
 });
}
...

I respond to changes in the selectedItemIndex property by altering the value of the URL argument I
pass to the WinJS.UI.Pages.render method. Each time a page is displayed, the relevant callback function
is executed, and my content is updated and presented to the user.

J Tip Note that when you use the bind method, your callback function will be executed with the current value of
the property you are monitoring. This allows me to ensure that the correct page is displayed, even when the user
has yet to make a selection.

The result of these additions is that clicking an item in the list allows the user to edit its details, while
marking the item done or adding a new item clears the selection and hides the detail page. You can see
the effect in Figure 3-4.

Figure 3-4. Allowing the user to edit the details of a grocery list item

The code in the callback for a page is executed every time that page is displayed. You need to ensure
that your code doesn’t make assumptions about the state of the elements in your page, other than they
have been loaded and added to the main layout. Since a page is loaded within the context of the main
layout, you can safely use the functions defined by JavaScript code used by the main HTML document.

CHAPTER 3 J APPLICATION CONTROLS

53

In my example, this includes the view model. Similarly, your elements will be subject to the CSS styles
that the main document defines.

J Tip Notice that I have used the size attribute on the select element so that several choices are shown at
once. This is the Metro convention for select elements that are part of the main application layout. However, for
flyouts, such as the one I created earlier in this chapter, the convention is a single-line select that opens a drop-
down list of options.

Displaying External Content
The WinJS page feature works only on content that is part of the application. You will generate an error if
you request an external URL using the WinJS.UI.Pages.render method. Instead, you must use an iframe
element if you want to display an external HTML document, but you can combine this element with the
WinJS page feature if you want to get the benefit of breaking your application down into small and
manageable pieces. To demonstrate this, I have created a new file in the html directory called
storeDetail.html. Listing 3-16 shows the contents of this file.

Listing 3-16. The storeDetail.html File

<!DOCTYPE html>
<html>
 <head>
 <title></title>
 </head>
 <body>
 <div id="noStoreSelectionContainer" class="win-type-x-large">
 <p>Select an item on the list</p>
 </div>

 <div id="storeSelectionContainer">
 <iframe id="storeFrame" seamless sandbox=""></iframe>
 </div>
 </body>
</html>

This is a simple document that acts as a wrapper around the iframe element and a placeholder
element to display when no list item has been selected. The most important element is, of course, the
iframe. The seamless attribute specifies that no border should be drawn around the iframe, and setting
the sandbox attribute to the empty string prevents the embedded content from running any scripts,
navigating to new pages, and submitting forms. I am going to use the iframe to display the home page of
the grocery store associated with the selected item. These pages contain all sorts of tracking scripts and
some very exception-prone code, all of which I want to spare my user from having to deal with.

CHAPTER 3 J APPLICATION CONTROLS

54

Adding the Callback
I am going to use the same approach for defining a callback as I did when loading a fragment. I have
added the callback function to the pages.js file, and you can see the additions in Listing 3-17.

Listing 3-17. Defining a Callback for the Page

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.UI.Pages.define("/html/noselection.html", {
 ready: function (targetElement) {
 document.getElementById("numberCount").innerText
 = ViewModel.UserData.getItems().length;
 }
 });

 WinJS.UI.Pages.define("/html/storeDetail.html", {
 ready: function (targetElement) {
 ViewModel.State.bind("selectedItemIndex", function (newValue) {

 document.getElementById('noStoreSelectionContainer').style.display
 = (newValue != -1 ? "none" : "");
 document.getElementById('storeSelectionContainer').style.display
 = (newValue == -1 ? "none" : "");

 if (newValue != -1) {
 var store = ViewModel.UserData.getItems().getAt(newValue).store;
 var url = "http://" + store.replace(" ", "") + ".com";
 document.getElementById("storeFrame").src = url;
 }
 });
 }
 })
})();

In the ready callback for this page, I bind to the selectedItemIndex property. When the user selects
an item, I use the iframe to display the home page of the relevant store. Changing the value of the
style.display property lets me switch between the placeholder element and the detail for the current
store.

J Tip My technique to creating a URL from a store name is pretty basic. I just remove any spaces and add .com
to the end of the name. This won’t suffice for a real project, but it will do just fine for my simple example.

CHAPTER 3 J APPLICATION CONTROLS

55

Showing the Page
You must avoid using ready callbacks to set up bindings for pages that are not always displayed, because
the JavaScript code will be executed each time the page is loaded. Over time, you end up with a series of
bindings, all of which perform the same task. WinJS doesn’t provide a mechanism for cleaning up when
the content of a page is removed from the layout, so the best approach is to move bindings into the main
JavaScript files for the application.

This isn’t a problem for the storeDetails.html page because it is loaded only once and never
removed from the document. In this case, I am using the WinJS page feature only so that I can
decompose my Metro app into self-contained pieces to make development and maintenance easier. As
you can see in Listing 3-18, I display the storeDetails.html page just once, meaning that I can expect the
code in my callback to be executed just once as well.

Listing 3-18. Displaying the Page

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html"
 : "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });

 WinJS.UI.Pages.render("/html/storeDetail.html",
 document.getElementById("storeDetailTarget"));
 });
}
...

The final step is to update the layout element in default.html, as follows:

...
<div id="bottomRightContainer" class="gridRight">
 <h1 class="win-type-xx-large">Store Detail</h1>
 <div id="storeDetailTarget"></div>
</div>
...

The result is that selecting an item on the main list will display the home page of the relevant store,
as shown in Figure 3-5.

CHAPTER 3 J APPLICATION CONTROLS

56

Figure 3-5. Displaying external content

Checking Manifest Permissions
Metro applications are subject to a security sandbox. To obtain access to external content, your
application must be granted one or more permissions in its manifest file. To ensure you have the access
you need, open the package.appmanifest file from the Solution Explorer and go to the Capabilities tab.

You will see a list of capabilities that you can request. These are presented to the user when they
view your app in the Metro Store so that they can make an informed choice about what access they grant
to your application. (Well, that’s the theory; in practice, users don’t generally pay attention to these
declarations until an app does something that surprises them.)

For the Visual Studio beta, the Internet (Client) capability is checked by default, but you may also
require the Private Networks (Client & Server) capability, depending on where your content is coming
from. Check the capabilities you require and save the manifest. We’ll return to the manifest in Chapter 4
to configure some of the other settings.

J Caution This is an area that I expect to change before the final Windows 8 release. The idea of private and
public networks is expressed in the Metro manifest capabilities, but not in the operating system when the user
sets up network connections. For the Consumer Preview at least, all network connections are treated the same
way, so the capabilities for a Metro app and the network model for the operating system will have to converge at
some point.

Summary
In this chapter, I introduced three important structural features for a Metro app: AppBars, flyouts, and
the navigation model. These facilities start to bridge the gap between a generic web app and the tools for
decomposing your application into manageable chunks.

You don’t have to use AppBars and flyouts, but your application won’t fit into the Metro model if
you don’t. Part of the attraction of Metro is to be able to use your HTML5 and JavaScript skills to create

CHAPTER 3 J APPLICATION CONTROLS

57

Windows applications. Creating an app that doesn’t follow the Metro conventions is to miss the
opportunity that Windows 8 presents to the web programmer.

Equally, you could elect to build your Metro app using a single HTML document. But, once again,
this would be a missed opportunity. The constraints that drive web apps toward content consolidation
don’t exist for Metro apps, which means that the ease of development, testing, and maintenance that
come from decomposing your content and code are worth exploring. The HTMLControl and pages
features are key enablers to this development style.

C H A P T E R 4

J J J�����

59

Layouts and Tiles

In this chapter, I describe two of the features that allow a Metro app to fit into the wider user experience
presented by Windows 8. The first of these features is the way that Metro apps can be snapped and filled
so that two apps can be viewed side by side. I show you how to adapt when your app is placed into one
of these layouts and how to change the layout when your interactions don’t fit inside the layout
constraints.

The second feature is the Metro tile model. Tiles are at the heart of the Windows 8 replacement for
the Start menu. At their simplest, they are static buttons that can be used to launch your app, but with a
little work they can present the user with an invaluable snapshot of the state of your application,
allowing the user to get an overview without having to run the application itself. In this chapter, I show
you how to create live tiles by applying updates and by using a related feature, badges. Table 4-1 provides
the summary for this chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Adapt an app’s layout when it has been
placed into a snapped or filled layout.

Use CSS media queries with Metro-
specific properties.

1

Detect changes in an app’s layout in code
or attempt to change the layout.

Use the Windows.UI.ViewManagement
namespace.

2

Define an update for a tile. Use an XML tile template. 3

Apply an update to a tile. Use the Windows.UI.Notifications
namespace.

4 through 6

Update square and wide tiles. Populate and combine two XML tile
templates.

7, 8

Apply a badge to a tile. Populate and apply an XML badge
template.

9, 10

CHAPTER 4 J LAYOUTS AND TILES

60

Dealing with Metro Layouts
Metro apps can be snapped into a 320-pixel strip of the screen so that the user can see two applications
at once. The other app, which occupies all of the display aside from those 320 pixels, is said to be filled.
Ensuring that your application can adapt to being snapped and filled is essential to providing the full
Metro experience to your users. There are two mechanisms for responding to being filled or snapped;
you can use CSS or use the Windows.UI.ViewManagement API. I’ll show you both approaches in the
sections that follow.

J Note Applications can be snapped in the landscape view only, and Windows 8 Consumer Preview supports
snapping only if the horizontal resolution of the display is 1366 pixels or greater. You must ensure that you have
selected the correct orientation and resolution in the simulator if you want to experiment with snapping.

Snapping and Filling with CSS
Microsoft has added some custom CSS media query properties that can be used to change the CSS for a
Metro app when it is snapped or filled. These are added to the default.css file when Visual Studio
creates a new Metro application project, as shown in Listing 4-1.

Listing 4-1. The Custom Snapped and Filled Media Query Properties

/* MetroGrocer styles removed for brevity */

@media screen and (-ms-view-state: fullscreen-landscape) {
}

@media screen and (-ms-view-state: filled) {
}

@media screen and (-ms-view-state: snapped) {

 #contentGrid div.gridRight, #listTable td:last-child, #listTable th {
 display: none;
 }

 #listTable td { white-space: nowrap;}

 #listTable td:first-child { border-right: thin solid white;}

 #contentGrid div.gridLeft { margin-left: 0.5em;}
}

@media screen and (-ms-view-state: fullscreen-portrait) {
}

CHAPTER 4 J LAYOUTS AND TILES

61

The four media queries defined in default.css define the four basic layout states that a Metro app
can find itself in: snapped, filled, full-screen in landscape mode, and full-screen in portrait mode. The
CSS styles I define within the media queries are applied only when the app is in the corresponding state.

For my example application, the snapped view presents too little space to display the entire layout.
As you can see in the listing, I have used the snapped media query to hide some elements and change the
appearance and behavior of others. You can see how these styles are applied in the snapped view in
Figure 4-1.

J Tip The normal CSS precedence rules apply to styles defined within these queries, which means that you
would normally want to make the link element for the default.css file the last one to appear in the
default.html file.

Figure 4-1. Adapting the app layout using CSS media queries

I have shown the snapped view next to an empty panel, but usually there would be another
application occupying this space. Notice that Windows adapts the Metro structural elements
automatically, such as removing the labels from AppBar buttons in the snapped layout.

Snapping and Filling with JavaScript
You can do a surprising amount to adapt to different layouts using just CSS, but there comes a point
where you need to be able to adapt in JavaScript as well. The Windows.UI.ViewManagement namespace
defines an object called ApplicationView that provides details about the current layout and provides a
simple mechanism for trying to change it. To demonstrate this feature, I have modified the
displayListItems method defined in my ui.js file, as shown in Listing 4-2.

CHAPTER 4 J LAYOUTS AND TILES

62

Listing 4-2. Adapting to Layouts Using JavaScript

...
displayListItems: function () {

 var templateElement = document.getElementById("itemTemplate");
 var targetElement = document.getElementById("itemBody");

 WinJS.Utilities.empty(targetElement);

 var list = ViewModel.UserData.getItems();

 for (var i = 0; i < list.length; i++) {
 templateElement.winControl.render(list.getAt(i), targetElement);
 }

 ViewModel.State.bind("selectedItemIndex", function (newIndex) {
 var children = WinJS.Utilities.children(targetElement).removeClass("selected");
 if (newIndex > -1 && newIndex < children.length) {
 WinJS.Utilities.addClass(children[newIndex], "selected");

 var appview = Windows.UI.ViewManagement.ApplicationView;
 if (appview.value == Windows.UI.ViewManagement.ApplicationViewState.snapped){
 appview.tryUnsnap();
 }
 }
 });

 WinJS.Utilities.children(targetElement).listen("click", function (e) {
 ViewModel.State.selectedItemIndex = this.rowIndex - 1;
 });
},
...

I have refactored this function so that rows are selected in response to changes in the
ViewModel.State.selectedItemIndex property and not just when the user clicks one of the rows in the
table element. This gives me an ideal opportunity to check the layout of the app using the
ApplicationView object. The effect I want is that if the user selects an item while the application is
snapped, then I change the layout to give myself enough space to show the elements for editing the item
details and viewing the web site of the appropriate store.

The ApplicationView.value property returns the current layout, represented by a value from the
ApplicationViewState enumeration. The values are snapped, filled, fullScreenPortrait, and
fullScreenLandscape.

If my app layout is snapped, then I call the tryUnsnap method. This will unsnap the application. The
result seems to be a little inconsistent in the Consumer Preview release; sometimes my application is
switched to the filled layout and other times to the full-screen layout.

CHAPTER 4 J LAYOUTS AND TILES

63

J Tip The ApplicationView object defines an addEventListener method that you can use to register a handler
for the viewstatechanged event. Your handler will be executed whenever the layout changes.

Using Tiles and Badges
Tiles are the representation of your application on the Start menu. At their simplest, tiles are just static
icons for starting your app. However, with a little effort, you can use your tile to present the user with a
useful summary of your app’s state and to draw their attention to activities they may want to perform.

In the sections that follow, I demonstrate how to present information through the tile of my
example Metro app. There are two possible, and conflicting, goals when you create a live tile; you are
trying to either encourage the user to run your app or dissuade them from running it. If you are trying to
attract the user, then your tile becomes an ad for the experience, insights, or content you offer. This is
appropriate for entertainment apps or those that present external content such as news.

Dissuading the user from running an app may seem like a strange goal, but it can significantly
improve the user experience. Consider productivity apps as an example. I dread to think the hours I have
lost waiting for calendar or to-do apps to load, just so I can check where my next appointment is or what
my most urgent action requires. You can reduce the friction and frustration that your users experience
when using your app and create a more pleasing and immediate experience by displaying the
information that the user needs in your app tile.

Both goals require careful thought. The overall Metro experience is flat, simple, and subdued. If you
are using your tile as an ad, then the muted nature of Metro makes it easy to create tiles that stand out. If
you go too far, though, you will create something that is discordant and jarring and is more of an eyesore
than an attraction.

If your goal is to reduce the number of times the user needs to run your app, then you need to
present the right information at the right time. This requires a good understanding of what drives your
users to adopt your app and the ability to customize the data that is presented. Adaptability is essential;
there is no point showing me the most urgent work action on my task list on a Saturday morning, for
example. Every time you present the user with the wrong information, you force them to run your app to
get what they do need.

J Tip An app can update its tile only when it is running. In Chapter 5, I detail the Metro app life cycle, and you
will learn that Metro apps are put into a suspended state when the user switches to another app. This means that
you can’t provide updates in the background. Windows 8 supports a push model where you can send XML updates
from the cloud, but this service isn’t available for the Consumer Preview.

Improving Static Tiles
The simplest way to improve the appearance of your application in the Start menu is to change the
images used for your app’s tile. You should customize the images for your app, even if you don’t use any
other tile features.

CHAPTER 4 J LAYOUTS AND TILES

64

To do this, you will need a set of three images of specific sizes: 30x30 pixels, 150x150 pixels, and
310x150 pixels. These images should contain the logo or text you want to display but be otherwise
transparent. I used a barcode motif for my example app, creating images called tile30.png, tile150.png,
and tile310.png and placing them in the images folder of my Visual Studio project.

To apply the new images, open the package.appxmanifest file from the Solution Explorer. There is a
Tile section on Application UI tab that has options to set the logo, wide logo, and small logo. There are
hints to explain which size is required for each option. You will also have to set the background color
that will be used for the tile; I set mine to the same color I use for the body element of my app.

J Tip It is important to set the background color in the manifest, rather than include a background in the images.
When you update a tile, which I demonstrate in the next section, the image is replaced with dynamic information,
on a backdrop of the color specified in the manifest.

You may have to uninstall your Metro app from the start screen for the tile images to take effect. The
next time you start your app from Visual Studio, you should see the new static tile. You can toggle
between the standard and wide views by selecting the tile and picking the Larger or Smaller buttons
from the AppBar. You can see the square and wide tile formats for the example application in Figure 4-2.

Figure 4-2. The updated static wide tile

Notice that the word Grocer is displayed at the bottom of the tile. I specified this text as the value for
the Short Name option in the Application UI tab and selected the All Logos option for Show Name so
that it is applied to both the regular and wide tiles.

J Tip You can also replace the splash screen that is shown to the user when the application is loading. There is
a Splash Screen section at the bottom of the Application UI tab in which you can specify the image and the
background color it should be displayed with. The image used for the splash screen must be 630x300 pixels.

Updating Tiles
For my example app, I am going to display the first few items on the grocery list. This isn’t the most
useful overview, but it will help demonstrate how the tile system works.

CHAPTER 4 J LAYOUTS AND TILES

65

Tile updates are based on preconfigured templates, which contain a mix of graphics and text and
are designed for either standard or wide tiles. The first thing you must do is pick the template you want.
The easiest way to do this is to look at the API documentation for the
Windows.UI.Notifications.TileTemplateType enumeration, which is available at http://goo.gl/hbC7R (I
have used short URLs in this chapter because the Microsoft URLs are long and difficult to read). The
template system is based on XML fragments, and you can see the XML structure for the template you
have chosen at http://goo.gl/w8cN8. I have chosen the tileSquareText03 template. This is for a square
tile and has four lines of nonwrapping text, without any images. You can see the XML fragment that
represents the tile in Listing 4-3.

Listing 4-3. The XML Fragment for the tileSquareText03 Tile Template

<tile>
 <visual lang="en-US">
 <binding template="TileSquareText03">
 <text id="1">Text Field 1</text>
 <text id="2">Text Field 2</text>
 <text id="3">Text Field 3</text>
 <text id="4">Text Field 4</text>
 </binding>
 </visual>
</tile>

The idea is to populate the text elements with information from the application and pass the result
to the Metro notifications system. To demonstrate this feature, I had added a new JavaScript file to the
project called tiles.js, the content of which is shown in Listing 4-4. The length of the
Windows.UI.Notifications is long enough to cause layout problems for code on the printed page, so I
have created a variable called tn as shorthand and assigned the namespace to it.

Listing 4-4. The tiles.js File

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("Tiles", {
 sendTileUpdate: function () {
 var tn = Windows.UI.Notifications;
 var xmlFragment = tn.TileUpdateManager
 .getTemplateContent(tn.TileTemplateType.tileSquareText03);

 var textNodes = xmlFragment.getElementsByTagName("text");
 var items = ViewModel.UserData.getItems();

 for (var i = 0; i < textNodes.length; i++) {
 var listItem = items.getAt(i);
 if (listItem) {
 textNodes[i].innerText = listItem.item;
 }
 }

 for (var i = 0; i < 5; i++) {

CHAPTER 4 J LAYOUTS AND TILES

66

 tn.TileUpdateManager.createTileUpdaterForApplication()
 .update(new tn.TileNotification(xmlFragment));
 }
 }
 });

 var eventTypes = ["itemchanged", "iteminserted", "itemmoved", "itemremoved"];
 var itemsList = ViewModel.UserData.getItems();
 eventTypes.forEach(function (type) {
 itemsList.addEventListener(type, Tiles.sendTileUpdate);
 });
})();

J Tip Notice that the first letter of the template name is lowercase. If you use an uppercase letter, then you will
get the default template rather than the one you wanted.

Populating the XML Template
To get the template XML fragment, I call the TileUpdateManager.getTemplateContent method, specifying
the template I want with a value from the TileTemplateType. This gives me a
Windows.Data.Xml.Dom.XmlDocument object to which I can apply standard DOM methods to set the value
of the text elements in the template. Well, sort of—because the XmlDocument object’s implementation of
getElementById doesn’t work, I have to use the getElementsByTagName method to get an array containing
all of the text elements in the XML. These elements are returned in the order they are defined in the
XML fragment, so I can iterate through and set the innerText property of each element to one of my
grocery list items.

J Tip Only three of the four text elements defined by the XML template will be visible by the user on the Start
menu. The last element is obscured by the application name or icon. This is true for many of the tile templates.

Applying the Tile Update
Once I have set the content of the XML document, I use it to create the update for the application tile. I
need to create a TileNotification object from the XML and then pass this to the update method of the
TileUpdater object that is returned from the TileUpdateManager.createTileUpdaterForApplication
method:

...
for (var i = 0; i < 5; i++) {
 tn.TileUpdateManager.createTileUpdaterForApplication()
 .update(new tn.TileNotification(xmlFragment));
}
...

CHAPTER 4 J LAYOUTS AND TILES

67

Not all tile updates are processed properly in the Consumer Preview, which is why I repeat the
notification using a for loop. Five seems to be the smallest number of repetitions that guarantees that an
update will be displayed on the Start menu.

Applying the Tile Update
My tile update is applied in two places. As you saw in Listing 4-4, the tiles.js file sets up event handlers
that call the sendTileUpdate function whenever the contents of the grocery list change. This ensures that
the tile always reflects changes the user makes to the list. I also call the sendTileUpdate method from the
performInitialSetup function in default.js, as shown in Listing 4-5.

Listing 4-5. Updating the Tile As Part of the Application Setup

...
function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {
 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html"
 : "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });

 WinJS.UI.Pages.render("/html/storeDetail.html",
 document.getElementById("storeDetailTarget"));

 Tiles.sendTileUpdate();
 });
}
...

Of course, since I have created a new JavaScript file, I need to link it to default.html, as shown in
Listing 4-6.

Listing 4-6. Adding the tiles.js File to default.html

...
<!-- MetroGrocer references -->
<link href="/css/list.css" rel="stylesheet">
<link href="/css/flyouts.css" rel="stylesheet">
<link href="/css/default.css" rel="stylesheet">
<script src="/js/viewmodel.js"></script>
<script src="/js/ui.js"></script>
<script src="/js/pages.js"></script>
<script src="/js/tiles.js"></script>
<script src="/js/default.js"></script>
...

CHAPTER 4 J LAYOUTS AND TILES

68

Testing the Tile Update
A couple of preparatory steps are required before I can test my updating tile. First, the Visual Studio
simulator doesn’t support updating tiles, which means I am going to have to test directly on my
development machine. To do this, I need to change the Visual Studio deployment target to Local
Machine, as shown in Figure 4-3.

Figure 4-3. Selecting the local machine for debugging

The second step is to uninstall my example app from the Start menu (which you do by selecting
Uninstall from the AppBar). In the Consumer Preview, there seems to be some “stickiness” where apps
that have previously relied on static tiles don’t process updates correctly.

With both of these steps completed, I can now start my application from Visual Studio by selecting
Start Debugging from the Debug menu. When the application has started, I can make changes to the
grocery list, and a pithy summary of the first three items will be shown on the start tile, as shown in
Figure 4-4.

Figure 4-4. Updating an application tile

J Tip You may not be able to find the tile on the Start menu if you have been using the simulator. If this is the
case, search for the app by typing the first few letters of its name. Clicking the small search result icon will cause
the tile to appear. If that doesn’t work, then reboot and start the application locally, making sure not to start the
simulator.

Updating Wide Tiles
The technique I showed you in the previous section is useful if you want to be able to update the square
or the wide tile for your application. But, unless you have very specific presentation needs for your data,

CHAPTER 4 J LAYOUTS AND TILES

69

you should provide updates for both square and wide tiles since you have no idea which your users will
select.

To update both tile sizes, you need to combine two XML templates to create a single fragment that
contains both updates. In this section, I am going to combine the tileSquareText03 and
tileWideBlockAndText01 templates. The wide template has a couple of additional fields, which I will use
to display the number of stores that the user has to visit to get all of the items on the grocery list. You can
see what I am aiming to produce in Listing 4-7—a fragment that follows the same format as a single
template but that combines two binding elements.

Listing 4-7. Composing a Single XML Fragment

<tile>
 <visual lang="en-US">
 <binding template="TileSquareText03">
 <text id="1">Apples</text>
 <text id="2">Hotdogs</text>
 <text id="3">Soda</text>
 <text id="4"></text>
 </binding>
 <binding template="TileWideBlockAndText01">
 <text id="1">Apples (Whole Foods)</text>
 <text id="2">Hotdogs (Costco)</text>
 <text id="3">Soda (Costco)</text>
 <text id="4"></text>
 <text id="5">2</text>
 <text id="6">Stores</text>
 </binding>
 </visual>
</tile>

There is no convenient API for combining templates. The approach I have taken is to use the XML
handling support to populate the templates separately and then combine them at the end of the process,
which you can see in Listing 4-8.

Listing 4-8. Producing a Single Update for Square and Wide Tiles

...
WinJS.Namespace.define("Tiles", {
 sendTileUpdate: function () {

 var storeCounter = { count: 0 };
 ViewModel.UserData.getItems().forEach(function (listItem) {
 if (!storeCounter[listItem.store]) {
 storeCounter[listItem.store] = true;
 storeCounter.count++;
 }
 });

 var tn = Windows.UI.Notifications;
 var squareXmlFragment = tn.TileUpdateManager

CHAPTER 4 J LAYOUTS AND TILES

70

 .getTemplateContent(tn.TileTemplateType.tileSquareText03);
 var wideXmlFragment = tn.TileUpdateManager
 .getTemplateContent(tn.TileTemplateType.tileWideBlockAndText01);

 var squareTextNodes = squareXmlFragment.getElementsByTagName("text");
 var wideTextNodes = wideXmlFragment.getElementsByTagName("text");
 var items = ViewModel.UserData.getItems();

 for (var i = 0; i < squareTextNodes.length; i++) {
 var listItem = items.getAt(i);
 if (listItem) {
 squareTextNodes[i].innerText = listItem.item;
 wideTextNodes[i].innerText = listItem.item + " (" + listItem.store + ")";
 }
 }

 wideTextNodes[4].innerText = storeCounter.count;
 wideTextNodes[5].innerText = "Stores";

 var wideBindingElement = wideXmlFragment.getElementsByTagName("binding")[0];
 var importedNode = squareXmlFragment.importNode(wideBindingElement, true);
 var squareVisualElement = squareXmlFragment.getElementsByTagName("visual")[0];
 squareVisualElement.appendChild(importedNode);

 for (var i = 0; i < 5; i++) {
 tn.TileUpdateManager.createTileUpdaterForApplication()
 .update(new tn.TileNotification(squareXmlFragment))
 }
 }
});
...

The wider format tile gives me an opportunity to present more information to the user on each line.
In this case, I include information about which store an item is to be purchased from in addition to the
overall number of store visits required.

Combining templates isn’t a difficult process to master, but you have to take care when trying to
merge the two XML fragments. I have used the template for the square tile as the basis for my combined
update. When I add the binding element from the wide template, I have to first import it into the square
XML document, like this:

var importedNode = squareXmlFragment.importNode(wideBindingElement, true);

The importNode method creates a new copy of my wide binding element in the context of my square
document. The arguments to the importNode method are the element I want to import and a value
indicating whether I want child nodes to be imported as well (which, of course, I do). Once I have
created this new element, I insert it into the square XML using the appendChild element:

squareVisualElement.appendChild(importedNode);

The result is the combined document I showed you in Listing 4-7. You can see the appearance of
both tile sizes in Figure 4-5. (You can toggle between the square and wide versions by selecting the tile
and using the Start menu AppBar.)

CHAPTER 4 J LAYOUTS AND TILES

71

Figure 4-5. Updating a wide tile

Applying Badges
Metro manages to pack a lot of features into tiles, including support for badges, which are small icon or
numeric overlays for a tile. The latter fall into the tile-as-an-advert category because there are very few
situations in which a numeric representation does anything other than invite the user to start the app.

J Tip Although I show tiles and badges being used together, you can apply badges directly to static tiles.

To demonstrate badges, I am going to show a simple indicator based on the number of items in the
grocery list. Listing 4-9 shows the additions to the tiles.js file.

Listing 4-9. Adding Support for Tile Badges

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("Tiles", {

 sendBadgeUpdate: function () {

 var itemCount = ViewModel.UserData.getItems().length;

 var tn = Windows.UI.Notifications;
 var templateType = itemCount ? tn.BadgeTemplateType.badgeGlyph
 : tn.BadgeTemplateType.badgeNumber;

 var badgeXml = tn.BadgeUpdateManager.getTemplateContent(templateType);
 var badgeAttribute = badgeXml.getElementsByTagName("badge")[0];
 badgeAttribute.setAttribute("value",
 itemCount > 3 ? "alert" : itemCount);

CHAPTER 4 J LAYOUTS AND TILES

72

 for (var i = 0; i < 5; i++) {
 var badgeNotification = new tn.BadgeNotification(badgeXml);
 tn.BadgeUpdateManager.createBadgeUpdaterForApplication()
 .update(badgeNotification);
 }
 },

 sendTileUpdate: function () {
 // ...code removed for brevity...
 }
 });

 var eventTypes = ["itemchanged", "iteminserted", "itemmoved", "itemremoved"];
 var itemsList = ViewModel.UserData.getItems();
 eventTypes.forEach(function (type) {
 itemsList.addEventListener(type, function () {
 Tiles.sendTileUpdate();
 Tiles.sendBadgeUpdate();
 });
 });
})();

Badges work in a similar way to tile notifications. You obtain an XML template, populate the
content, and use it to present some information to the user via the Start menu. Two types of badge
template are available. The first will display a numeric value between 1 and 99, and the second will
display a small image from a limited range defined by Windows.

The numeric and iconic templates are the same in the Consumer Preview and, as Listing 4-10
shows, are much simpler than the ones I used for tiles.

Listing 4-10. The Template for Numeric and Image Badges

<badge value=""/>

The objective is to set the value attribute to either a numeric value or the name of an icon. I display
a numeric badge if there are three or fewer items on the grocery list. If there are more than three items,
then I use an icon to indicate that the user should be concerned about the extent of their shopping
obligations.

The process for creating a badge begins with selecting a template. The two template types are
Windows.UI.Notifications.BadgeTemplateType: for numeric badges you use the badgeNumber template,
and for icons you use the badgeGlyph template. You could use the same template in both situations
because they return the same XML, at least in the Consumer Preview. This may change in later releases,
so it is prudent to select the right template, even though the content is the same.

The next step is to locate the value attribute in the XML and assign it either a numeric value or the
name of an icon. The numeric range for badges is very specific; it is from 1 to 99. If you set the value to
less than 1, the badge won’t be displayed at all. Any value greater than 99 results in a badge showing 99.

The list of icons is equally prescriptive. You cannot use your own icons and must choose from a list
of ten that Windows supports. You can see a list of the icons at http://goo.gl/YoYee. For this example, I
have chosen the alert icon, which looks like an asterisk. Once the XML is populated, you create a new
BadgeNotification object and use it to post the update.

CHAPTER 4 J LAYOUTS AND TILES

73

 As with tiles, I find that not all badges updates are processed, so I repeat the update five times to
make sure it gets through:

...
for (var i = 0; i < 5; i++) {
 var badgeNotification = new tn.BadgeNotification(badgeXml);
 tn.BadgeUpdateManager.createBadgeUpdaterForApplication().update(badgeNotification);
}
...

All that remains is to ensure that my badge updates are created. To do this, I have changed the event
handler for the grocery list events so that the tile and badge are updated together. You can see the four
different badge/tile configurations in Figure 4-6, wide and square tiles, with number and icon badges.

Figure 4-6. Displaying a badge on a tile

Summary
In this chapter, I showed you how to adapt to Metro snapped and filled layouts and how to use tiles to
provide your users with enticements to run your app or the data they require to avoid doing so. These
features are essential in delivering an app that is integrated into the broader Metro experience.

You may feel that the amount of space available in a snapped layout is too limited to offer any
serious functionality, but with some careful consideration, it is possible to focus on the essence of the
service that you offer and omit everything else. If all else fails, you can present an information-only
summary of your app and rely on JavaScript to break out of the layout.

Careful consideration is also required to get the most from tiles and badges. Well-thought-out
badges can significantly improve the attractiveness or utility of your app, but ill-considered tiles are
annoying or just plain useless.

C H A P T E R 5

J J J�����

75

Life-Cycle Events

In this, the final chapter in this book, I show you how to take control of the Metro app life cycle by
responding to key Windows events. I show you how to fix the code that Visual Studio adds to projects,
how to properly deal with your app being suspended and resumed, and how to implement contracts
that tie your app into the wider user experience that Windows 8 offers. Along the way, I’ll demonstrate
the use of the geolocation feature and show you how to set up and manage a recurring asynchronous
task. Table 5-1 provides the summary for this chapter.

Table 5-1. Chapter Summary

Problem Solution Listing

Ensure that your app receives the
suspending and resuming events.

Subscribe to events from the
Windows.UI.WebUI.WebUIApplication
object.

1

Create a recurring background task. Use the WinJS Promise object as a
wrapper around other asynchronous
activities.

2, 3

Request more time before your app is
suspended.

Call the
suspendingOperation.getDeferral
method on the event passed to your
suspending handler function.

4

Implement a contract. Declare the contract in the manifest
and respond to the type information in
the activation event.

5, 6

Dealing with the Metro Application Life Cycle
In Chapter 1, I showed you the skeletal code that Visual Studio placed into the default.js file to give me
a jump-start with my example project. This code handles the Metro application life-cycle events,

CHAPTER 5 J LIFE-CYCLE EVENTS

76

ensuring that I can respond appropriately to the signals that the operating system is sending me. There
are three key stages in the life of a Metro app.

The first stage, activation, occurs when your application is started. The Metro runtime will load and
process your content and JavaScript and signal when everything is ready. It is during activation that I
generate the dynamic content for my example app, for example.

Users don’t typically close Metro apps; they just move to another application and leave Windows to
sort things out. This is why there are no close buttons or menu bars on a Metro UI. A Metro app that is
no longer required is moved into the second stage and is suspended. While suspended, no execution of
the app code takes place, and there is no interaction with the user.

If the user switches back to a suspended app, then the third stage occurs: the application is restored.
The app is displayed to the user, and execution of the app resumes. Suspended applications are not
always restored. If the device is low on memory, for example, Windows may simply terminate a
suspended app.

Correcting the Visual Studio Event Code
Unfortunately, the code for handling the life-cycle events that Visual Studio adds to a project doesn’t
work. It deals with activation and suspension quite happily, but it prevents the application from being
notified when it is being restored. Fortunately, there are several points in the WinJS and Windows API
where I can register to receive the life-cycle events, so my first task in this chapter is to update
default.js so that I am properly notified when my app enters all three life-cycle stages. You can see the
changes in Listing 5-1.

Listing 5-1. Registering for Life-Cycle Event Notifications

(function () {
 "use strict";

 Windows.UI.WebUI.WebUIApplication.addEventListener("activated", performInitialSetup);
 Windows.UI.WebUI.WebUIApplication.addEventListener("resuming", performResume);
 Windows.UI.WebUI.WebUIApplication.addEventListener("suspending", performSuspend);

 function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {

 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html"
 : "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });

 WinJS.UI.Pages.render("/html/storeDetail.html",
 document.getElementById("storeDetailTarget"));

CHAPTER 5 J LIFE-CYCLE EVENTS

77

 Tiles.sendTileUpdate();
 Tiles.sendBadgeUpdate();
 });
 }

 function performResume(e) {
 WinJS.Utilities.query("#topRightContainer h1")[0].innerText = "Resumed";
 }

 function performSuspend(e) {
 WinJS.Utilities.query("#leftContainer h1")[0].innerText = "Suspended";
 }
})();

I have used the events provided through the Windows.UI.WebUI.WebUIApplication class, and they
neatly map to the life-cycle events. My example Metro app doesn’t currently perform any tasks that are
affected by the application being suspended and resumed, but I want to show you how to test for the
events. To that end, I have added statements to the performResume and performSuspend functions that
change the value of h1 elements in the HTML document to indicate when the suspending and resuming
events are received.

Testing the Life-Cycle Events
The most important thing to remember when testing for the resuming and suspending events is that you
can’t do it using the Visual Studio debugger, which disables these events so that Windows doesn’t
suspend your application when the debugger breaks on an exception.

This is why I have used the h1 elements to indicate when the suspending and resuming events are
received. I can’t use the JavaScript console or the debugger output because neither is available.

J Tip I show you how to use trigger the life-cycle events manually in the sections that follow, which means
working without the debugger. There are some buttons that appear on the Visual Studio toolbar to simulate the
life-cycle events with the debugger, but I recommend you use these with caution, because they generate
simulated events that don’t give you a complete picture of how your app is treated by the operating system during
its life cycle.

Activate the Application
To trigger the activated event, start the application by selecting Start Without Debugging from the
Visual Studio Debug menu. You can also start the app from the Start menu, either in the simulator or on
your local machine. The important thing is not to start the app with the debugger.

CHAPTER 5 J LIFE-CYCLE EVENTS

78

Suspend the Application
The easiest way to suspend the application is to switch to the desktop by pressing Win+D. Open the Task
Manager, right-click the item for your Metro app, and select Go to Details from the pop-up menu. The
Task Manager will switch to the Details tab and select the WWAHost.exe process that is responsible for
running the app. After a few seconds, the value shown in the Status column will change from Running to
Suspended, which tells you that Windows has suspended the app. The app will have been sent the
suspending event, but we have no way to see that until we resume it.

Resuming the Application
Switching back to the application will resume it. You will see that the h1 elements displayed at the top of
the layout show that both the resuming and suspending events were sent by Windows, as shown in Figure
5-1.

Figure 5-1. Using the DOM to report when the suspending and resuming events are received

The state of a resumed application is exactly as it was at the moment it was suspended. Your layout,
data, event handlers, and everything else will be just as it was. You don’t have to call processAll when
handling the resuming event, for example.

Your application could have been suspended for a long time, especially if the device was put into a
low-power state (such as sleeping). Network connections will have been closed by any servers you were
talking to (which is why you should close them explicitly when you get the suspending event) and will
have to be reopened when your application is resumed. You will also have to refresh data that may have
become stale. This includes location data, since the device may have been moved during the period your
app was suspended.

J Tip Windows allows users to terminate Metro apps by pressing Alt+F4. I am not certain that this feature will
survive to the final version of Windows 8, but it is something you may need to consider for your app. There is no
helpful warning event that gives you the opportunity to tidy up your data and operations. Instead, Windows just
terminates your application’s process.

Adding a Background Activity
Now that I have confirmed that my app can get and respond to the resuming and suspending events, I
can add some functionality that requires a recurring background task. For this example, I am going to
use the geolocation service to report on the current device location. To do this, I have created a new
JavaScript file called location.js, the contents of which are shown in Listing 5-2.

CHAPTER 5 J LIFE-CYCLE EVENTS

79

Listing 5-2. Tracking the Device Location

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 var currentPromise;
 var tracking = false;

 function trackLocation() {
 currentPromise = new WinJS.Promise(function (complete) {
 var geo = new Windows.Devices.Geolocation.Geolocator();
 if (geo) {
 geo.getGeopositionAsync().then(function (position) {
 WinJS.xhr({
 url: "http://nominatim.openstreetmap.org"
 + "/reverse?format=json&lat="
 + position.coordinate.latitude
 + "&lon=" + position.coordinate.longitude

 }).then(function (data) {
 var dataObject = JSON.parse(data.response);
 if (dataObject.address.road) {
 var date = new Date();
 var time = date.getHours() + ":" + date.getMinutes()
 + ":" + date.getSeconds();
 document.getElementById("geo").innerText =
 dataObject.address.road + " (" + time + ")";
 }
 });
 });
 }
 complete();
 });

 currentPromise.then(function () {
 if (tracking) {
 setTimeout(trackLocation, 5000);
 }
 });
 }

 WinJS.Namespace.define("Location", {
 startTracking: function () {
 tracking = true;
 trackLocation();
 },

 stopTracking: function () {
 tracking = false;

CHAPTER 5 J LIFE-CYCLE EVENTS

80

 return currentPromise;
 }
 });
})();

Using Location Tracking
The Windows 8 geolocation service is available through the Windows.Devices.Geolocation.Geolocator
object. You can subscribe to receive events when the location information changes, but I want to
demonstrate a repeating background task, so I have used the getGeopositionAsync method, which
produces a snapshot of the current location. This is an asynchronous operation, and so the
getGeopositionAsync method returns a Promise object that completes when the location information is
available.

When I get the location data, I make an Ajax call using the WinJS.xhr object, which is a Promise
wrapper around the standard browser XmlHttpRequest object. My Ajax request is to a reverse geocoding
service, which allows me to translate the latitude and longitude information from the geolocation service
into a street address. The geocoding service returns a JSON string, which I parse into a JavaScript object
from which I read the street so that I can display it to the user, along with a timestamp indicating the last
location update.

J Tip I have used the OpenStreetMap geocoding service because it doesn’t require a unique account token.
This means you can run the example without having to create a Google Maps or Bing Maps account.

I have added some simple elements to the default.html file so that I can display the location to the
user. You can see the additions in Listing 5-3.

Listing 5-3. Adding Elements to default.html to Display Location Information

...
 <script src="/js/tiles.js"></script>
 <script src="/js/location.js"></script>
 <script src="/js/default.js"></script>
</head>
<body>
 <div class="midtitle"><h2>Your location is: </h2></div>
 <div id="contentGrid">
 <div id="leftContainer" class="gridLeft">
 <h1 class="win-type-xx-large">Grocery List</h1>
...

CHAPTER 5 J LIFE-CYCLE EVENTS

81

J Tip One of the pleasures of working with Metro using HTML5 and JavaScript is that you can choose between
the HTML5 and Windows APIs for some key areas of functionality, including geolocation. I have used the Windows
API in this example, but the HTML5 equivalent would have worked just as well.

Controlling the Task
I am describing the geolocation and Ajax requests only in passing because the point of this example is
the creation of a periodically repeating background task. It doesn’t really matter what the task does. The
most important part of the location.js file is the startTracking and stopTracking functions. When I call
the startTracking function, I create a new Promise object that represents the overall background task.

J Tip I have used the Promise object as a wrapper around the two Promise objects representing the request
for location data and the subsequent Ajax request. When both my inner Promise objects have finished, I call the
complete function, which is passed to the callback function I used when I created the Promise object. See the API
reference for more information about the WinJS.Promise object.

Each time the request completes, I create another Promise encapsulating a new request, repeating
as long as the tracking variable is true. I start a new request cycle every five seconds.

When I call the stopTracking function, I set the tracking variable to false and return the Promise
representing the current request cycle. The Promise I return represents a request cycle in one of two
states. The first state is when the request is active, meaning that I am waiting for the geolocation data or
the Ajax request to complete, or I am applying an update to the DOM. If you call the then method on an
active Promise, the callback function won’t be executed until the cycle is complete. The second state is
when the request is complete and I am in the lull before the next cycle starts. Calling the then method on
a completed Promise will cause the callback function to be executed without delay.

With this in mind, I am able to integrate my background task into default.js using the handlers for
the different life-cycle events, as shown in Listing 5-4.

Listing 5-4. Using the Life-Cycle Events to Control a Background Task

(function () {
 "use strict";

 Windows.UI.WebUI.WebUIApplication.addEventListener("activated", performInitialSetup);
 Windows.UI.WebUI.WebUIApplication.addEventListener("resuming", performResume);
 Windows.UI.WebUI.WebUIApplication.addEventListener("suspending", performSuspend);

 function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {

 UI.List.displayListItems();
 UI.List.setupListEvents();

CHAPTER 5 J LIFE-CYCLE EVENTS

82

 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html"
 : "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });

 WinJS.UI.Pages.render("/html/storeDetail.html",
 document.getElementById("storeDetailTarget"));

 //Tiles.sendTileUpdate();
 //Tiles.sendBadgeUpdate();

 Location.startTracking();
 });
 }

 function performResume(e) {
 Location.startTracking();
 }

 function performSuspend(e) {
 var promise = Location.stopTracking();
 if (promise) {
 var deferral = e.suspendingOperation.getDeferral();
 promise.then(function () {
 deferral.complete();
 });
 }
 }
})();

The changes for the activated and resuming events are simple: in both cases I want to start my
background task, so I just have to call the Location.startTracking method. The interesting part of this
listing, and the reason that I included the example in this chapter, is how I handle the suspending event.

J Tip Notice I have commented out the lines that apply the tile and badge updates. This is so that the example
app will run in the simulator. I have also disabled the event handlers in the tiles.js file.

My problem is that any background task that is active when Windows suspends my app
automatically carries on when the app is resumed. Depending on where in the request cycle the task was
suspended, I can expect to see an error (for example, trying to read data from a network request that

CHAPTER 5 J LIFE-CYCLE EVENTS

83

timed out during suspension) or stale data (because my task was just about to update the DOM when the
app was suspended).

To help work around these problems, the suspending event defines a property called
suspendingOperation that returns a Windows.ApplicationModel.SuspendingOperation object. Calling this
object’s getDeferral method asks Windows to give your app a little more time to prepare for suspension.
When you have finished winding up your background tasks, you call the complete method on the object
that the getDeferral method returned, signaling to Windows that your app is now ready to be
suspended.

Asking for a deferral grants an extra five seconds to prepare for suspension. This may not sound like
a lot, but it is pretty generous given that Window may be under a lot of pressure to get your app out of
the way to make system resources available.

J Caution In the Consumer Preview, Windows will terminate a Metro app that doesn’t call the complete method
on the deferral object within the five-second allowance. I imagine that this will change before the final release, but
it is worth paying close attention to.

Declaring the Location Capability
Apps must declare their need to access the location service in their manifest. Before running the
updated app, open package.appxmanifest, switch to the Capabilities tab, ensure that the Location
capability is checked and save the file.

Testing the Background Task
All that remains is to test that the background task is meshing properly with the life-cycle events. The
easiest way to do this is with the simulator, which supports simulated location data.

Start by defining a location in the simulator (one of the buttons on the right side of the simulator
window opens the Set Location dialog box into which you can enter a location).

Once you have specified a location, start the app, remembering to do so without using the debugger.
After a few seconds, you will see the location information displayed at the top of the app window, as
shown in Figure 5-2.

Figure 5-2. Location information displayed as part of the MetroGrocer layout

Switch to the desktop and use the Task Manager to monitor the app until it is suspended. While the
app is suspended, use the simulator’s Set Location dialog to change the location.

CHAPTER 5 J LIFE-CYCLE EVENTS

84

J Tip I have used the coordinates of the Empire State building for this example. If you want to do the same,
then use the Set Location dialog to specify a latitude value of 40.748 and a longitude of -73.98.

Resume the example app. The resuming event will restart the background task, ensuring that fresh
data is displayed.

J Tip You may have to grant permission for the simulator and the app to access your location data. There is an
automated process that checks the required settings and prompts you to make the required changes to your
system configuration.

Implementing the Search Contract
The suspending and resuming events are important, but I want to return to the activated event and show
you how it can be used to get tighter integration between your app and the rest of the Metro system. To
do this, I am going to implement a contract, which is how Windows 8 expresses some key aspects of the
Metro user experience. I am going to implement the search contract, which tells Windows that my
example application is capable of supporting the operating-system wide search mechanism. In the
sections that follow, I’ll show you how to declare support for the contract and implement the contract
terms.

Declaring Support for the Contract
The first step toward implementing a contract is to update the manifest. Open the package.appxmanifest
file, and switch to the Declarations tab. If you open the Available Declarations menu, you will see the
lists of contracts that you can declare support for. Select Search and click the Add button. The Search
contract will appear on the Supported Declarations list. Ignore the properties for the contract; they don’t
do anything for JavaScript Metro apps.

Handling the Search
The purpose of the search contract is to connect the operating system search system with some kind of
search capability within your application. For my example app, I am going to handle search requests by
iterating through the items on the grocery list and finding the first one that contains the string the user is
looking for. This won’t be the most sophisticated search implementation, but it will let me focus on the
contract without getting bogged down in creating lots of new code to handle searches. I have added a
new JavaScript file to the project called search.js, the contents of which you can see in Listing 5-5.

CHAPTER 5 J LIFE-CYCLE EVENTS

85

Listing 5-5. Implementing a Basic Search Feature

/// <reference path="//Microsoft.WinJS.0.6/js/base.js" />
/// <reference path="//Microsoft.WinJS.0.6/js/ui.js" />

(function () {
 "use strict";

 WinJS.Namespace.define("Search", {

 searchAndSelect: function (searchTerm) {
 var searchTerm = searchTerm.toLowerCase();
 var items = ViewModel.UserData.getItems();
 var matchedIndex = -1;

 for (var i = 0 ; i < items.length; i++) {
 if (items.getAt(i).item.toLowerCase().indexOf(searchTerm) > -1) {
 matchedIndex = i;
 break;
 }
 }

 ViewModel.State.selectedItemIndex = matchedIndex;
 }
 });
})();

In this file, I have defined a namespace called Search that contains the searchAndSelect function.
This function accepts the term that the user is searching for and performs a basic case-insensitive search
through the items in the view model. If there is a match, then I set the selectedItemIndex property in the
view model, which, through the magic of binding, will cause the matched item to be highlighted and for
its details to be displayed.

J Tip As with all of the other JavaScript files in my project, I have added a script element to default.html.

Implementing the Activated Event Handler
The activated event is used by the system to invoke the search contract, which means I have to update
the way I handle this event. Previously, an activated event just signaled “start the app,” but now I have
to pay attention to the event details to figure out what I am being asked to do. Listing 5-6 shows the
changes to the default.js file.

Listing 5-6. Determining the Activation Detail in an Event

(function () {
 "use strict";

 Windows.UI.WebUI.WebUIApplication.addEventListener("activated", function (e) {

CHAPTER 5 J LIFE-CYCLE EVENTS

86

 var actNS = Windows.ApplicationModel.Activation;

 if (e.previousExecutionState == actNS.ApplicationExecutionState.notRunning) {
 performInitialSetup(e);
 }

 if (e.kind == actNS.ActivationKind.search) {
 Search.searchAndSelect(e.queryText);
 }
 });

 Windows.UI.WebUI.WebUIApplication.addEventListener("resuming", performResume);
 Windows.UI.WebUI.WebUIApplication.addEventListener("suspending", performSuspend);

 function performInitialSetup(e) {
 WinJS.UI.processAll().then(function () {

 UI.List.displayListItems();
 UI.List.setupListEvents();
 UI.AppBar.setupButtons();
 UI.Flyouts.setupAddItemFlyout();

 ViewModel.State.bind("selectedItemIndex", function (newValue) {
 var targetElement = document.getElementById("itemDetailTarget");
 WinJS.Utilities.empty(targetElement)
 var url = newValue == -1 ? "/html/noSelection.html"
 : "/pages/itemDetail/itemDetail.html"
 WinJS.UI.Pages.render(url, targetElement);
 });

 WinJS.UI.Pages.render("/html/storeDetail.html",
 document.getElementById("storeDetailTarget"));

 //Tiles.sendTileUpdate();
 //Tiles.sendBadgeUpdate();

 Location.startTracking();
 });
 }

 function performResume(e) {
 Location.startTracking();
 }

 function performSuspend(e) {
 var promise = Location.stopTracking();
 if (promise) {
 var deferral = e.suspendingOperation.getDeferral();
 promise.then(function () {
 deferral.complete();
 });
 }
 }
})();

CHAPTER 5 J LIFE-CYCLE EVENTS

87

Windows provides information about why your application has been sent the activated event
through the kind property of the Event object passed to your handler function. The range of possible
values is enumerated by Windows.ApplicationModel.Activation.ActivationKind. There are different
kinds of activation for different contracts for printing, for opening a file, for working with a device
camera, and, of course, for handling search requests. By checking the value of the kind property, I can
discover whether the activated event has been sent for a search request:

...
if (e.kind == actNS.ActivationKind.search) {
 Search.searchAndSelect(e.queryText);
}
...

The search term that the user has provided is available through the event’s queryText property. If
my activated event has been sent for a search request, then I call the searchAndSelect function, passing
in the queryText value. This has the effect of locating and selecting the first matching item in the grocery
list.

Ensuring Application Setup
My technique for servicing search requests relies on the performInitialSetup function having been
called before I call searchAndSelect, because I rely on the view model and its associated bindings to
translate a change in the selectedItemIndex property into changes in the display.

The problem is that the search-related activated event can have two meanings. If my app is already
running, the search activated event means just “perform this search.” But, if my app isn’t running, then
the event means “start the app and perform this search.” Working out which meaning I am dealing with
is important. You get only one activated event, even if your app isn’t running when the user initiated the
search.

I create duplicate bindings and event handlers if I call performInitialSetup when my app is already
running. All sorts of odd behaviors emerge when this happens, but the most visible problem is that the
right column in the layout contains two sets of content because I end up calling the WinJS.Pages.render
method too many times. By contrast, if I fail to call performInitialSetup when my app wasn’t running,
then I don’t have any bindings and event handlers and I don’t display any content at all.

I need to be careful to call the performInitialSetup function when my app hasn’t been running and
avoid calling it the function if it has. I do this by looking at the previousExecutionState property of the
event passed to the activated handler function, which reports on the execution state of my app just
before the activated event was sent. The range of values for this property is enumerated by
Windows.ApplicationModel.Activation.ApplicationExecutionState, but the only value I care about to
solve this problem is notRunning, which tells me that the app is being told to start up as well as deal with
the search:

...
if (e.previousExecutionState == actNS.ApplicationExecutionState.notRunning) {
 performInitialSetup(e);
}
...

CHAPTER 5 J LIFE-CYCLE EVENTS

88

Testing the Search Contract
To test the contract, start your app. It doesn’t matter if you start it with or without the debugger, and it
doesn’t matter if you exit or suspend the app after you start it. The key thing is to make sure it is present
on the simulator.

Next, switch to the Start menu. You app, if it was still running, will be switched to the background
and, after a few seconds, will be suspended. To begin a search, just start typing. You want to search for
something that will make a match, so type hot (so that your search will match against the hot dogs item
in the grocery list).

As you type, Windows will automatically begin a standard search, looking for applications whose
names contain hot. You will see something similar to Figure 5-3, since there are no such apps in the
default Windows 8 installation.

Figure 5-3. Initiating a search

To switch to an application-specific search, click the app’s name on the list below the search box.
This will send the search activated event to the app. For my example app, I have clicked the
MetroGrocer item in the list, and the activated event triggers my simple search handler, the result of
which can be seen in Figure 5-4.

Figure 5-4. Performing an application-specific search

J Tip If you start a search from the charms bar while your app is being displayed, then Windows will
automatically select it from the list, focusing the initial search on your app.

CHAPTER 5 J LIFE-CYCLE EVENTS

89

Summary
In this chapter, I showed you how to use the life-cycle events to respond to the way in which Windows
manages Metro apps. I described each of the key events and showed you how to use the DOM to ensure
that your app is receiving and processing them correctly.

Particular care must be taken to cleanly wrap up background tasks when an app is being suspended,
and I showed you how to get control of this process by requesting a suspension deferral, allowing an
extra few seconds to minimize the risk of potential errors or stale data when the app is resumed.

Finally, I showed you how the activated event is used to signal different requests, including
obligations to fulfill the contracts that bind a Metro app to the wider Windows platform. I showed you
the search contract, but there are several others, and I recommend you take the time to explore them
fully. The more contracts you implement, the more integrated your app becomes.

In this book, I set out to show you the core system features that will jump-start your Metro app
development. I have shown you how to use data bindings, the major structural controls, how to deal
with snapped and filled layouts, how to customize your application’s tile, and, in this chapter, how to
take control of the application life cycle. With these skills as your foundation, you will be able to create
rich and expressive Metro apps and get a head start on the final release of Windows 8.

I wish you every success in your Metro development projects.

USE CODE MICR02
by 5/31/2013 to get 30% off all
Microsoft titles from Apress.com!

www.apress.com |
233 Spring Street, 6th Floor | New York, NY 10013 U.S.A.

@apress

IMPORTANT NOTE: PLEASE NOTE IN ORDER TO REDEEM THIS DISCOUNT, YOUR SHOPPING CART CAN ONLY CONTAIN ONE ITEM PER
TRANSACTION. THEREFORE, MULTIPLE ITEMS NEED TO BE DOWNLOADED IN SEPARATE TRANSACTIONS, USING THE SAME COUPON CODE.

Limited
Time Only

OFFER ENDS 5/31/13, MIDNIGHT.
NONTRANSFERABLE. CANNOT BE COMBINED
WITH ANY OTHER OFFERS.

Special offer from Apress–
the leading tech resource!

Save
30%

	Metro Revealed
	Building Windows 8 Apps with HTML5 and JavaScript
	About This Book
	What Do You Need to Know Before You Read This Book?
	Do You Need to Know About HTML5?
	What Software Do You Need for This Book?
	What Is the Structure of This Book?
	Chapter 1: Getting Started
	Chapter 2: Data and Bindings
	Chapter 3: Application Controls
	Chapter 4: Layouts and Tiles
	Chapter 5: Life-cycle Events

	Chapter 1 - Getting Started
	Is There a Lot of Code in This Book?
	Getting Up and Running
	Creating the Project
	Exploring the default.html File
	Exploring the default.css File
	Exploring the default.js File

	Starting and Debugging a JavaScript Metro App
	Reloading the Metro Application
	Debugging Metro Apps

	Summary

	Chapter 2 - Data and Bindings
	Creating the JavaScript File
	Using Code Completion
	Reducing Global Namespace Pollution
	Creating Namespaces
	Using Self-executing Functions
	Using Strict Mode

	Returning to the View Model

	Using Data Binding
	Using Basic Declarative Bindings
	Creating Dynamic Bindings
	Combining Namespaces with Observable Items

	Updating an Observable Data Item

	Creating Observable Arrays
	Using Templates
	Using the Template
	Responding to List Changes
	Tracking the Selected Item
	Applying the Template to the App
	Understanding Promises

	Summary

	Chapter 3 - Application Controls
	Adding an AppBar
	Implementing App Bar Buttons

	Adding Flyouts
	Managing the Controls in a Flyout

	Using Pages
	Defining the HTML
	Creating the JavaScript Callback
	Loading and Displaying the HTML

	Loading a Complete HTML Document
	Switching Between Pages

	Displaying External Content
	Adding the Callback
	Showing the Page
	Checking Manifest Permissions

	Summary

	Chapter 4 - Layouts and Tiles
	Dealing with Metro Layouts
	Snapping and Filling with CSS
	Snapping and Filling with JavaScript

	Using Tiles and Badges
	Improving Static Tiles
	Updating Tiles
	Populating the XML Template
	Applying the Tile Update
	Applying the Tile Update
	Testing the Tile Update

	Updating Wide Tiles

	Applying Badges
	Summary

	Chapter 5 - Lifecycle Events
	Dealing with the Metro Application Life Cycle
	Correcting the Visual Studio Event Code
	Testing the Life-Cycle Events
	Activate the Application
	Suspend the Application
	Resuming the Application

	Adding a Background Activity
	Using Location Tracking
	Controlling the Task
	Declaring the Location Capability
	Testing the Background Task

	Implementing the Search Contract
	Declaring Support for the Contract
	Handling the Search
	Implementing the Activated Event Handler
	Ensuring Application Setup

	Testing the Search Contract

	Summary

